These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31488215)

  • 1. Challenges in the construction of knowledge bases for human microbiome-disease associations.
    Badal VD; Wright D; Katsis Y; Kim HC; Swafford AD; Knight R; Hsu CN
    Microbiome; 2019 Sep; 7(1):129. PubMed ID: 31488215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining the electronic health record for disease knowledge.
    Chen ES; Sarkar IN
    Methods Mol Biol; 2014; 1159():269-86. PubMed ID: 24788272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Jointly learning word embeddings using a corpus and a knowledge base.
    Alsuhaibani M; Bollegala D; Maehara T; Kawarabayashi KI
    PLoS One; 2018; 13(3):e0193094. PubMed ID: 29529052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creating an ignorance-base: Exploring known unknowns in the scientific literature.
    Boguslav MR; Salem NM; White EK; Sullivan KJ; Bada M; Hernandez TL; Leach SM; Hunter LE
    J Biomed Inform; 2023 Jul; 143():104405. PubMed ID: 37270143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural language processing (NLP) to facilitate abstract review in medical research: the application of BioBERT to exploring the 20-year use of NLP in medical research.
    Masoumi S; Amirkhani H; Sadeghian N; Shahraz S
    Syst Rev; 2024 Apr; 13(1):107. PubMed ID: 38622611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knowledge based word-concept model estimation and refinement for biomedical text mining.
    Jimeno Yepes A; Berlanga R
    J Biomed Inform; 2015 Feb; 53():300-7. PubMed ID: 25510606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automatic approach for constructing a knowledge base of symptoms in Chinese.
    Ruan T; Wang M; Sun J; Wang T; Zeng L; Yin Y; Gao J
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):33. PubMed ID: 29297414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
    Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T
    Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NCBI disease corpus: a resource for disease name recognition and concept normalization.
    Doğan RI; Leaman R; Lu Z
    J Biomed Inform; 2014 Feb; 47():1-10. PubMed ID: 24393765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DiMeX: A Text Mining System for Mutation-Disease Association Extraction.
    Mahmood AS; Wu TJ; Mazumder R; Vijay-Shanker K
    PLoS One; 2016; 11(4):e0152725. PubMed ID: 27073839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhenoGO: assigning phenotypic context to gene ontology annotations with natural language processing.
    Lussier Y; Borlawsky T; Rappaport D; Liu Y; Friedman C
    Pac Symp Biocomput; 2006; ():64-75. PubMed ID: 17094228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On building a diabetes centric knowledge base via mining the web.
    Gong F; Chen Y; Wang H; Lu H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):49. PubMed ID: 30961582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research.
    Bravo À; Piñero J; Queralt-Rosinach N; Rautschka M; Furlong LI
    BMC Bioinformatics; 2015 Feb; 16():55. PubMed ID: 25886734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases.
    Gupta S; Ross KE; Tudor CO; Wu CH; Schmidt CJ; Vijay-Shanker K
    J Biomed Semantics; 2016 Apr; 7(1):9. PubMed ID: 27216254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semantic biomedical resource discovery: a Natural Language Processing framework.
    Sfakianaki P; Koumakis L; Sfakianakis S; Iatraki G; Zacharioudakis G; Graf N; Marias K; Tsiknakis M
    BMC Med Inform Decis Mak; 2015 Sep; 15():77. PubMed ID: 26423616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural Language Processing in Dutch Free Text Radiology Reports: Challenges in a Small Language Area Staging Pulmonary Oncology.
    Nobel JM; Puts S; Bakers FCH; Robben SGF; Dekker ALAJ
    J Digit Imaging; 2020 Aug; 33(4):1002-1008. PubMed ID: 32076924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical Natural Language Processing in 2015: Leveraging the Variety of Texts of Clinical Interest.
    Névéol A; Zweigenbaum P
    Yearb Med Inform; 2016 Nov; (1):234-239. PubMed ID: 27830256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating linguistic knowledge for learning distributed word representations.
    Wang Y; Liu Z; Sun M
    PLoS One; 2015; 10(4):e0118437. PubMed ID: 25874581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing knowledge representations by ontological relations.
    Denecke K
    Stud Health Technol Inform; 2008; 136():791-6. PubMed ID: 18487828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Context and Knowledge Representations for Chemical-Disease Relation Extraction.
    Zhou H; Yang Y; Ning S; Liu Z; Lang C; Lin Y; Huang D
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1879-1889. PubMed ID: 29994540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.