These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 31488222)

  • 21. Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate.
    Rees JN; Florang VR; Anderson DG; Doorn JA
    Chem Res Toxicol; 2007 Oct; 20(10):1536-42. PubMed ID: 17887726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson's disease pathogenesis.
    Burke WJ; Li SW; Williams EA; Nonneman R; Zahm DS
    Brain Res; 2003 Nov; 989(2):205-13. PubMed ID: 14556942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3,4-dihydroxyphenylacetaldehyde: a potential target for neuroprotective therapy in Parkinson's disease.
    Burke WJ
    Curr Drug Targets CNS Neurol Disord; 2003 Apr; 2(2):143-8. PubMed ID: 12769806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.
    Perier C; Bender A; García-Arumí E; Melià MJ; Bové J; Laub C; Klopstock T; Elstner M; Mounsey RB; Teismann P; Prolla T; Andreu AL; Vila M
    Brain; 2013 Aug; 136(Pt 8):2369-78. PubMed ID: 23884809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antioxidant-Mediated Modulation of Protein Reactivity for 3,4-Dihydroxyphenylacetaldehyde, a Toxic Dopamine Metabolite.
    Anderson DG; Florang VR; Schamp JH; Buettner GR; Doorn JA
    Chem Res Toxicol; 2016 Jul; 29(7):1098-107. PubMed ID: 27268734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catechols in post-mortem brain of patients with Parkinson disease.
    Goldstein DS; Sullivan P; Holmes C; Kopin IJ; Basile MJ; Mash DC
    Eur J Neurol; 2011 May; 18(5):703-10. PubMed ID: 21073636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Products of oxidative stress inhibit aldehyde oxidation and reduction pathways in dopamine catabolism yielding elevated levels of a reactive intermediate.
    Jinsmaa Y; Florang VR; Rees JN; Anderson DG; Strack S; Doorn JA
    Chem Res Toxicol; 2009 May; 22(5):835-41. PubMed ID: 19388687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative Transformations of 3,4-Dihydroxyphenylacetaldehyde Generate Potential Reactive Intermediates as Causative Agents for Its Neurotoxicity.
    Ito S; Tanaka H; Ojika M; Wakamatsu K; Sugumaran M
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The rat rotenone model reproduces the abnormal pattern of central catecholamine metabolism found in Parkinson's disease.
    Landau R; Halperin R; Sullivan P; Zibly Z; Leibowitz A; Goldstein DS; Sharabi Y
    Dis Model Mech; 2022 Jan; 15(1):. PubMed ID: 34842277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders.
    Tong J; Rathitharan G; Meyer JH; Furukawa Y; Ang LC; Boileau I; Guttman M; Hornykiewicz O; Kish SJ
    Brain; 2017 Sep; 140(9):2460-2474. PubMed ID: 29050386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 5-S-cysteinyl-dopamine, a neurotoxic endogenous metabolite of dopamine: Implications for Parkinson's disease.
    Badillo-Ramírez I; Saniger JM; Rivas-Arancibia S
    Neurochem Int; 2019 Oct; 129():104514. PubMed ID: 31369776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impaired aldehyde detoxification exacerbates motor deficits in an alpha-synuclein mouse model of Parkinson's disease.
    Martinez PA; Martinez VE; Rani S; Murrell M; Javors M; Gelfond J; Doorn JA; Fernandez E; Strong R
    Brain Behav; 2023 Sep; 13(9):e3150. PubMed ID: 37452461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative Stress and Dopaminergic Metabolism: A Major PD Pathogenic Mechanism and Basis of Potential Antioxidant Therapies.
    Rasool A; Manzoor R; Ullah K; Afzal R; Ul-Haq A; Imran H; Kaleem I; Akhtar T; Farrukh A; Hameed S; Bashir S
    CNS Neurol Disord Drug Targets; 2024; 23(7):852-864. PubMed ID: 37303175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3,4-Dihydroxyphenylacetaldehyde Is More Efficient than Dopamine in Oligomerizing and Quinonizing
    Jinsmaa Y; Isonaka R; Sharabi Y; Goldstein DS
    J Pharmacol Exp Ther; 2020 Feb; 372(2):157-165. PubMed ID: 31744850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective dopaminergic vulnerability: 3,4-dihydroxyphenylacetaldehyde targets mitochondria.
    Kristal BS; Conway AD; Brown AM; Jain JC; Ulluci PA; Li SW; Burke WJ
    Free Radic Biol Med; 2001 Apr; 30(8):924-31. PubMed ID: 11295535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease?
    Herrera A; Muñoz P; Steinbusch HWM; Segura-Aguilar J
    ACS Chem Neurosci; 2017 Apr; 8(4):702-711. PubMed ID: 28233992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Are dopamine derivatives implicated in the pathogenesis of Parkinson's disease?
    Bisaglia M; Filograna R; Beltramini M; Bubacco L
    Ageing Res Rev; 2014 Jan; 13():107-14. PubMed ID: 24389159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic stress in PC12 cells induces the formation of the endogenous dopaminergic neurotoxin, 3,4-dihydroxyphenylacetaldehyde.
    Lamensdorf I; Eisenhofer G; Harvey-White J; Hayakawa Y; Kirk K; Kopin IJ
    J Neurosci Res; 2000 May; 60(4):552-8. PubMed ID: 10797558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dysregulation of astrocytic mitochondrial function following exposure to a dopamine metabolite: Implications for Parkinson's disease.
    Bagnoli E; Diviney T; FitzGerald U
    Eur J Neurosci; 2021 May; 53(9):2960-2972. PubMed ID: 32353182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.