These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31488294)
1. Peak alignment of gas chromatography-mass spectrometry data with deep learning. Li M; Wang XR J Chromatogr A; 2019 Oct; 1604():460476. PubMed ID: 31488294 [TBL] [Abstract][Full Text] [Related]
2. Global peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry using point matching algorithms. Deng B; Kim S; Li H; Heath E; Zhang X J Bioinform Comput Biol; 2016 Dec; 14(6):1650032. PubMed ID: 27650662 [TBL] [Abstract][Full Text] [Related]
3. Deep learning-based method for automatic resolution of gas chromatography-mass spectrometry data from complex samples. Fan Y; Yu C; Lu H; Chen Y; Hu B; Zhang X; Su J; Zhang Z J Chromatogr A; 2023 Feb; 1690():463768. PubMed ID: 36641940 [TBL] [Abstract][Full Text] [Related]
4. Smith-Waterman peak alignment for comprehensive two-dimensional gas chromatography-mass spectrometry. Kim S; Koo I; Fang A; Zhang X BMC Bioinformatics; 2011 Jun; 12():235. PubMed ID: 21676240 [TBL] [Abstract][Full Text] [Related]
5. Web Server for Peak Detection, Baseline Correction, and Alignment in Two-Dimensional Gas Chromatography Mass Spectrometry-Based Metabolomics Data. Tian TF; Wang SY; Kuo TC; Tan CE; Chen GY; Kuo CH; Chen CS; Chan CC; Lin OA; Tseng YJ Anal Chem; 2016 Nov; 88(21):10395-10403. PubMed ID: 27673369 [TBL] [Abstract][Full Text] [Related]
6. A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments. Robinson MD; De Souza DP; Keen WW; Saunders EC; McConville MJ; Speed TP; Likić VA BMC Bioinformatics; 2007 Oct; 8():419. PubMed ID: 17963529 [TBL] [Abstract][Full Text] [Related]
7. TagFinder for the quantitative analysis of gas chromatography--mass spectrometry (GC-MS)-based metabolite profiling experiments. Luedemann A; Strassburg K; Erban A; Kopka J Bioinformatics; 2008 Mar; 24(5):732-7. PubMed ID: 18204057 [TBL] [Abstract][Full Text] [Related]
8. Fully automatic resolution of untargeted GC-MS data with deep learning assistance. Fan X; Xu Z; Zhang H; Liu D; Yang Q; Tao Q; Wen M; Kang X; Zhang Z; Lu H Talanta; 2022 Jul; 244():123415. PubMed ID: 35358897 [TBL] [Abstract][Full Text] [Related]
9. An optimal peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry using mixture similarity measure. Kim S; Fang A; Wang B; Jeong J; Zhang X Bioinformatics; 2011 Jun; 27(12):1660-6. PubMed ID: 21493650 [TBL] [Abstract][Full Text] [Related]
10. An iterative block-shifting approach to retention time alignment that preserves the shape and area of gas chromatography-mass spectrometry peaks. Chae M; Shmookler Reis RJ; Thaden JJ BMC Bioinformatics; 2008 Aug; 9 Suppl 9(Suppl 9):S15. PubMed ID: 18793460 [TBL] [Abstract][Full Text] [Related]
11. Deep-Learning-Assisted multivariate curve resolution. Fan X; Ma P; Hou M; Ni Y; Fang Z; Lu H; Zhang Z J Chromatogr A; 2021 Jan; 1635():461713. PubMed ID: 33229011 [TBL] [Abstract][Full Text] [Related]
12. Steroid identification via deep learning retention time predictions and two-dimensional gas chromatography-high resolution mass spectrometry. Randazzo GM; Bileck A; Danani A; Vogt B; Groessl M J Chromatogr A; 2020 Feb; 1612():460661. PubMed ID: 31708215 [TBL] [Abstract][Full Text] [Related]
13. QPMASS: A parallel peak alignment and quantification software for the analysis of large-scale gas chromatography-mass spectrometry (GC-MS)-based metabolomics datasets. Duan L; Ma A; Meng X; Shen GA; Qi X J Chromatogr A; 2020 Jun; 1620():460999. PubMed ID: 32151418 [TBL] [Abstract][Full Text] [Related]
14. Deep Learning Driven GC-MS Library Search and Its Application for Metabolomics. Matyushin DD; Sholokhova AY; Buryak AK Anal Chem; 2020 Sep; 92(17):11818-11825. PubMed ID: 32867500 [TBL] [Abstract][Full Text] [Related]
15. Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets. Hoffmann N; Keck M; Neuweger H; Wilhelm M; Högy P; Niehaus K; Stoye J BMC Bioinformatics; 2012 Aug; 13():214. PubMed ID: 22920415 [TBL] [Abstract][Full Text] [Related]
16. The performance of atmospheric pressure gas chromatography-tandem mass spectrometry compared to gas chromatography-high resolution mass spectrometry for the analysis of polychlorinated dioxins and polychlorinated biphenyls in food and feed samples. Ten Dam G; Pussente IC; Scholl G; Eppe G; Schaechtele A; van Leeuwen S J Chromatogr A; 2016 Dec; 1477():76-90. PubMed ID: 27894695 [TBL] [Abstract][Full Text] [Related]
17. Classification of high-speed gas chromatography-mass spectrometry data by principal component analysis coupled with piecewise alignment and feature selection. Watson NE; Vanwingerden MM; Pierce KM; Wright BW; Synovec RE J Chromatogr A; 2006 Sep; 1129(1):111-8. PubMed ID: 16860329 [TBL] [Abstract][Full Text] [Related]
18. High-speed peak matching algorithm for retention time alignment of gas chromatographic data for chemometric analysis. Johnson KJ; Wright BW; Jarman KH; Synovec RE J Chromatogr A; 2003 May; 996(1-2):141-55. PubMed ID: 12830915 [TBL] [Abstract][Full Text] [Related]
19. Comparative evaluation of eight software programs for alignment of gas chromatography-mass spectrometry chromatograms in metabolomics experiments. Niu W; Knight E; Xia Q; McGarvey BD J Chromatogr A; 2014 Dec; 1374():199-206. PubMed ID: 25435458 [TBL] [Abstract][Full Text] [Related]