These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31488294)
21. BiPACE 2D--graph-based multiple alignment for comprehensive 2D gas chromatography-mass spectrometry. Hoffmann N; Wilhelm M; Doebbe A; Niehaus K; Stoye J Bioinformatics; 2014 Apr; 30(7):988-95. PubMed ID: 24363380 [TBL] [Abstract][Full Text] [Related]
22. Improving the quality of biomarker candidates in untargeted metabolomics via peak table-based alignment of comprehensive two-dimensional gas chromatography-mass spectrometry data. Bean HD; Hill JE; Dimandja JM J Chromatogr A; 2015 May; 1394():111-7. PubMed ID: 25857541 [TBL] [Abstract][Full Text] [Related]
23. Toward automated chromatographic fingerprinting: A non-alignment approach to gas chromatography mass spectrometry data. Vestner J; de Revel G; Krieger-Weber S; Rauhut D; du Toit M; de Villiers A Anal Chim Acta; 2016 Mar; 911():42-58. PubMed ID: 26893085 [TBL] [Abstract][Full Text] [Related]
24. The use of multivariate curve resolution methods to improve the analysis of muramic acid as bacterial marker using gas chromatography-mass spectrometry: an alternative method to gas chromatography-tandem mass spectrometry. Moazeni-Pourasil RS; Piri F; Ghassempour A; Jalali-Heravi M J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Feb; 949-950():1-6. PubMed ID: 24441017 [TBL] [Abstract][Full Text] [Related]
25. ADAP-GC 3.2: Graphical Software Tool for Efficient Spectral Deconvolution of Gas Chromatography-High-Resolution Mass Spectrometry Metabolomics Data. Smirnov A; Jia W; Walker DI; Jones DP; Du X J Proteome Res; 2018 Jan; 17(1):470-478. PubMed ID: 29076734 [TBL] [Abstract][Full Text] [Related]
26. A Simple Method for Peak Alignment Using Relative Retention Time Related to an Inherent Peak in Liquid Chromatography-Mass Spectrometry-Based Metabolomics. Wang Y; Ma L; Zhang M; Chen M; Li P; He C; Yan C; Wan JB J Chromatogr Sci; 2019 Jan; 57(1):9-16. PubMed ID: 30084945 [TBL] [Abstract][Full Text] [Related]
27. PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools. O'Callaghan S; De Souza DP; Isaac A; Wang Q; Hodkinson L; Olshansky M; Erwin T; Appelbe B; Tull DL; Roessner U; Bacic A; McConville MJ; Likić VA BMC Bioinformatics; 2012 May; 13():115. PubMed ID: 22647087 [TBL] [Abstract][Full Text] [Related]
28. An automated data analysis pipeline for GC-TOF-MS metabonomics studies. Jiang W; Qiu Y; Ni Y; Su M; Jia W; Du X J Proteome Res; 2010 Nov; 9(11):5974-81. PubMed ID: 20825247 [TBL] [Abstract][Full Text] [Related]
29. Comparison of GC-MS and GC×GC-MS in the analysis of human serum samples for biomarker discovery. Winnike JH; Wei X; Knagge KJ; Colman SD; Gregory SG; Zhang X J Proteome Res; 2015 Apr; 14(4):1810-7. PubMed ID: 25735966 [TBL] [Abstract][Full Text] [Related]
30. Gas chromatography - mass spectrometry data processing made easy. Johnsen LG; Skou PB; Khakimov B; Bro R J Chromatogr A; 2017 Jun; 1503():57-64. PubMed ID: 28499599 [TBL] [Abstract][Full Text] [Related]
31. A novel approach to transforming a non-targeted metabolic profiling method to a pseudo-targeted method using the retention time locking gas chromatography/mass spectrometry-selected ions monitoring. Li Y; Ruan Q; Li Y; Ye G; Lu X; Lin X; Xu G J Chromatogr A; 2012 Sep; 1255():228-36. PubMed ID: 22342183 [TBL] [Abstract][Full Text] [Related]
32. Peak assignment in multi-capillary column-ion mobility spectrometry using comparative studies with gas chromatography-mass spectrometry for VOC analysis. Jünger M; Bödeker B; Baumbach JI Anal Bioanal Chem; 2010 Jan; 396(1):471-82. PubMed ID: 19838827 [TBL] [Abstract][Full Text] [Related]
33. Resolving of challenging gas chromatography-mass spectrometry peak clusters in fragrance samples using multicomponent factorization approaches based on polygon inflation algorithm. Ghaheri S; Masoum S; Gholami A J Chromatogr A; 2016 Jan; 1429():317-28. PubMed ID: 26711156 [TBL] [Abstract][Full Text] [Related]
34. A simple automated procedure for the detection and identification of peaks in gas chromatography--continuous scan mass spectrometry. Application to systematic toxicological analysis of drugs in whole human blood. Polettini A J Anal Toxicol; 1996; 20(7):579-86. PubMed ID: 8934310 [TBL] [Abstract][Full Text] [Related]
35. Comparative evaluation of software for retention time alignment of gas chromatography/time-of-flight mass spectrometry-based metabonomic data. Koh Y; Pasikanti KK; Yap CW; Chan EC J Chromatogr A; 2010 Dec; 1217(52):8308-16. PubMed ID: 21081237 [TBL] [Abstract][Full Text] [Related]
36. Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. Buckley SA; Stott AW; Evershed RP Analyst; 1999 Apr; 124(4):443-52. PubMed ID: 10605875 [TBL] [Abstract][Full Text] [Related]
37. Application of fast Fourier transform cross-correlation and mass spectrometry data for accurate alignment of chromatograms. Zheng YB; Zhang ZM; Liang YZ; Zhan DJ; Huang JH; Yun YH; Xie HL J Chromatogr A; 2013 Apr; 1286():175-82. PubMed ID: 23489488 [TBL] [Abstract][Full Text] [Related]
38. eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC/MS-Based Metabolomics. Domingo-Almenara X; Brezmes J; Vinaixa M; Samino S; Ramirez N; Ramon-Krauel M; Lerin C; Díaz M; Ibáñez L; Correig X; Perera-Lluna A; Yanes O Anal Chem; 2016 Oct; 88(19):9821-9829. PubMed ID: 27584001 [TBL] [Abstract][Full Text] [Related]
39. Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery. Coble JB; Fraga CG J Chromatogr A; 2014 Sep; 1358():155-64. PubMed ID: 25063004 [TBL] [Abstract][Full Text] [Related]
40. Automated Gas Chromatography Peak Alignment: A Deep Learning Approach using Greedy Optimization and Simulation. Cao L; Zang W; Sharma R; Tabartehfarahani A; Thota C; Devi Sivakumar A; Lam A; Fan X; Ward KR; Ansari S Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082708 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]