BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31488436)

  • 21. Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells.
    Stover T; Kester M
    J Pharmacol Exp Ther; 2003 Nov; 307(2):468-75. PubMed ID: 12975495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liposomes for drug delivery to mitochondria.
    Boddapati SV; D'Souza GG; Weissig V
    Methods Mol Biol; 2010; 605():295-303. PubMed ID: 20072889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lecithin-Based Dermal Drug Delivery for Anti-Pigmentation Maize Ceramide.
    Kagotani K; Nakayama H; Zang L; Fujimoto Y; Hayashi A; Sono R; Nishimura N; Shimada Y
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32244349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic, non-natural sphingolipid analogs inhibit the biosynthesis of cellular sphingolipids, elevate ceramide and induce apoptotic cell death.
    Dagan A; Wang C; Fibach E; Gatt S
    Biochim Biophys Acta; 2003 Sep; 1633(3):161-9. PubMed ID: 14499735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-vitro cytotoxic/cytostatic activity of anionic liposomes containing vinblastine against leukaemic human cell lines.
    Maswadeh H; Demetzos C; Dimas K; Loukas YL; Georgopoulos A; Mavromoustakos T; Papaioannou GT
    J Pharm Pharmacol; 2002 Feb; 54(2):189-96. PubMed ID: 11848282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacology, clinical efficacy and adverse effects of vindesine sulfate, a new vinca alkaloid.
    Cersosimo RJ; Bromer R; Licciardello JT; Hong WK
    Pharmacotherapy; 1983; 3(5):259-74. PubMed ID: 6359081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunoliposomes in Acute Myeloid Leukaemia Therapy: An Overview of Possible Targets and Obstacles.
    Singh A; Myklebust NN; Furevik SMV; Haugse R; Herfindal L
    Curr Med Chem; 2019; 26(28):5278-5292. PubMed ID: 31099318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interdiction of Sphingolipid Metabolism Revisited: Focus on Prostate Cancer.
    Voelkel-Johnson C; Norris JS; White-Gilbertson S
    Adv Cancer Res; 2018; 140():265-293. PubMed ID: 30060812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel therapeutic nano-particles (lipocores): trapping poorly water soluble compounds.
    Perkins WR; Ahmad I; Li X; Hirsh DJ; Masters GR; Fecko CJ; Lee J; Ali S; Nguyen J; Schupsky J; Herbert C; Janoff AS; Mayhew E
    Int J Pharm; 2000 Apr; 200(1):27-39. PubMed ID: 10845683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma.
    Stover TC; Sharma A; Robertson GP; Kester M
    Clin Cancer Res; 2005 May; 11(9):3465-74. PubMed ID: 15867249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New therapeutic approach for myeloid leukemia: induction of apoptosis via modulation of reactive oxygen species production by natural compounds.
    Kizaki M
    Int J Hematol; 2006 May; 83(4):283-8. PubMed ID: 16757425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systemic Codelivery of a Homoserine Derived Ceramide Analogue and Curcumin to Tumor Vasculature Inhibits Mouse Tumor Growth.
    Barui S; Saha S; Yakati V; Chaudhuri A
    Mol Pharm; 2016 Feb; 13(2):404-19. PubMed ID: 26716471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways.
    Hajj C; Becker-Flegler KA; Haimovitz-Friedman A
    Biol Chem; 2015 Jun; 396(6-7):669-79. PubMed ID: 25719313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Introduction: Enigmas of Sphingolipids.
    Stiban J
    Adv Exp Med Biol; 2019; 1159():1-3. PubMed ID: 31502196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Paclitaxel-induced apoptosis in Jurkat, a leukemic T cell line, is enhanced by ceramide.
    Myrick D; Blackinton D; Klostergaard J; Kouttab N; Maizel A; Wanebo H; Mehta S
    Leuk Res; 1999 Jun; 23(6):569-78. PubMed ID: 10374850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and use of ceramide nanoliposomes in cancer.
    Watters RJ; Kester M; Tran MA; Loughran TP; Liu X
    Methods Enzymol; 2012; 508():89-108. PubMed ID: 22449922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel ophthalmic formulation of myriocin: implications in retinitis pigmentosa.
    Platania CBM; Dei Cas M; Cianciolo S; Fidilio A; Lazzara F; Paroni R; Pignatello R; Strettoi E; Ghidoni R; Drago F; Bucolo C
    Drug Deliv; 2019 Dec; 26(1):237-243. PubMed ID: 30883241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anti-Cancerous Potential of Polyphenol-Loaded Polymeric Nanotherapeutics.
    Ernest U; Chen HY; Xu MJ; Taghipour YD; Asad MHHB; Rahimi R; Murtaza G
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30373235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of ceramide and sphingolipid metabolism in tumors: potential modulation of chemotherapy.
    Modrak DE
    Methods Mol Med; 2005; 111():183-94. PubMed ID: 15911980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ceramide synthases as potential targets for therapeutic intervention in human diseases.
    Park JW; Park WJ; Futerman AH
    Biochim Biophys Acta; 2014 May; 1841(5):671-81. PubMed ID: 24021978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.