These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 31488547)
1. Interdomain communication in the phosphatidylcholine regulatory enzyme, CCTα, relies on a modular αE helix. Taneva SG; Lee J; Knowles DG; Tishyadhigama C; Chen H; Cornell RB J Biol Chem; 2019 Oct; 294(42):15517-15530. PubMed ID: 31488547 [TBL] [Abstract][Full Text] [Related]
2. Remodeling of the interdomain allosteric linker upon membrane binding of CCTα pulls its active site close to the membrane surface. Knowles DG; Lee J; Taneva SG; Cornell RB J Biol Chem; 2019 Oct; 294(42):15531-15543. PubMed ID: 31488548 [TBL] [Abstract][Full Text] [Related]
3. An auto-inhibitory helix in CTP:phosphocholine cytidylyltransferase hijacks the catalytic residue and constrains a pliable, domain-bridging helix pair. Ramezanpour M; Lee J; Taneva SG; Tieleman DP; Cornell RB J Biol Chem; 2018 May; 293(18):7070-7084. PubMed ID: 29519816 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for autoinhibition of CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix. Lee J; Taneva SG; Holland BW; Tieleman DP; Cornell RB J Biol Chem; 2014 Jan; 289(3):1742-55. PubMed ID: 24275660 [TBL] [Abstract][Full Text] [Related]
5. The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site. Huang HK; Taneva SG; Lee J; Silva LP; Schriemer DC; Cornell RB J Mol Biol; 2013 May; 425(9):1546-64. PubMed ID: 23238251 [TBL] [Abstract][Full Text] [Related]
6. Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability. Cornell RB; Taneva SG; Dennis MK; Tse R; Dhillon RK; Lee J J Biol Chem; 2019 Feb; 294(5):1490-1501. PubMed ID: 30559292 [TBL] [Abstract][Full Text] [Related]
8. Interdomain and membrane interactions of CTP:phosphocholine cytidylyltransferase revealed via limited proteolysis and mass spectrometry. Bogan MJ; Agnes GR; Pio F; Cornell RB J Biol Chem; 2005 May; 280(20):19613-24. PubMed ID: 15713672 [TBL] [Abstract][Full Text] [Related]
9. Lipid activation of CTP: phosphocholine cytidylyltransferase alpha: characterization and identification of a second activation domain. Lykidis A; Jackson P; Jackowski S Biochemistry; 2001 Jan; 40(2):494-503. PubMed ID: 11148044 [TBL] [Abstract][Full Text] [Related]
10. Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Cornell RB; Northwood IC Trends Biochem Sci; 2000 Sep; 25(9):441-7. PubMed ID: 10973058 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of a mammalian CTP: phosphocholine cytidylyltransferase catalytic domain reveals novel active site residues within a highly conserved nucleotidyltransferase fold. Lee J; Johnson J; Ding Z; Paetzel M; Cornell RB J Biol Chem; 2009 Nov; 284(48):33535-48. PubMed ID: 19783652 [TBL] [Abstract][Full Text] [Related]
12. A 22-mer segment in the structurally pliable regulatory domain of metazoan CTP: phosphocholine cytidylyltransferase facilitates both silencing and activating functions. Ding Z; Taneva SG; Huang HK; Campbell SA; Semenec L; Chen N; Cornell RB J Biol Chem; 2012 Nov; 287(46):38980-91. PubMed ID: 22988242 [TBL] [Abstract][Full Text] [Related]
14. CTP:phosphocholine cytidylyltransferase: Function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Cornell RB; Ridgway ND Prog Lipid Res; 2015 Jul; 59():147-71. PubMed ID: 26165797 [TBL] [Abstract][Full Text] [Related]
15. Nuclear export of the rate-limiting enzyme in phosphatidylcholine synthesis is mediated by its membrane binding domain. Gehrig K; Morton CC; Ridgway ND J Lipid Res; 2009 May; 50(5):966-76. PubMed ID: 19098306 [TBL] [Abstract][Full Text] [Related]
16. Lipid-induced conformational switch in the membrane binding domain of CTP:phosphocholine cytidylyltransferase: a circular dichroism study. Taneva S; Johnson JE; Cornell RB Biochemistry; 2003 Oct; 42(40):11768-76. PubMed ID: 14529288 [TBL] [Abstract][Full Text] [Related]
17. Cloning and characterization of a second human CTP:phosphocholine cytidylyltransferase. Lykidis A; Murti KG; Jackowski S J Biol Chem; 1998 May; 273(22):14022-9. PubMed ID: 9593753 [TBL] [Abstract][Full Text] [Related]
18. Functions of membrane binding domain of CTP:phosphocholine cytidylyltransferase in alveolar type II cells. Ridsdale R; Tseu I; Wang J; Post M Am J Respir Cell Mol Biol; 2010 Jul; 43(1):74-87. PubMed ID: 19684306 [TBL] [Abstract][Full Text] [Related]
19. Contribution of each membrane binding domain of the CTP:phosphocholine cytidylyltransferase-alpha dimer to its activation, membrane binding, and membrane cross-bridging. Taneva S; Dennis MK; Ding Z; Smith JL; Cornell RB J Biol Chem; 2008 Oct; 283(42):28137-48. PubMed ID: 18694933 [TBL] [Abstract][Full Text] [Related]
20. The intrinsically disordered nuclear localization signal and phosphorylation segments distinguish the membrane affinity of two cytidylyltransferase isoforms. Dennis MK; Taneva SG; Cornell RB J Biol Chem; 2011 Apr; 286(14):12349-60. PubMed ID: 21303909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]