These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 31488607)

  • 1. Deep Learning-Based Histopathologic Assessment of Kidney Tissue.
    Hermsen M; de Bel T; den Boer M; Steenbergen EJ; Kers J; Florquin S; Roelofs JJTH; Stegall MD; Alexander MP; Smith BH; Smeets B; Hilbrands LB; van der Laak JAWM
    J Am Soc Nephrol; 2019 Oct; 30(10):1968-1979. PubMed ID: 31488607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains.
    Jayapandian CP; Chen Y; Janowczyk AR; Palmer MB; Cassol CA; Sekulic M; Hodgin JB; Zee J; Hewitt SM; O'Toole J; Toro P; Sedor JR; Barisoni L; Madabhushi A;
    Kidney Int; 2021 Jan; 99(1):86-101. PubMed ID: 32835732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study.
    Kers J; Bülow RD; Klinkhammer BM; Breimer GE; Fontana F; Abiola AA; Hofstraat R; Corthals GL; Peters-Sengers H; Djudjaj S; von Stillfried S; Hölscher DL; Pieters TT; van Zuilen AD; Bemelman FJ; Nurmohamed AS; Naesens M; Roelofs JJTH; Florquin S; Floege J; Nguyen TQ; Kather JN; Boor P
    Lancet Digit Health; 2022 Jan; 4(1):e18-e26. PubMed ID: 34794930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology.
    Bouteldja N; Klinkhammer BM; Bülow RD; Droste P; Otten SW; Freifrau von Stillfried S; Moellmann J; Sheehan SM; Korstanje R; Menzel S; Bankhead P; Mietsch M; Drummer C; Lehrke M; Kramann R; Floege J; Boor P; Merhof D
    J Am Soc Nephrol; 2021 Jan; 32(1):52-68. PubMed ID: 33154175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning identified pathological abnormalities predictive of graft loss in kidney transplant biopsies.
    Yi Z; Salem F; Menon MC; Keung K; Xi C; Hultin S; Haroon Al Rasheed MR; Li L; Su F; Sun Z; Wei C; Huang W; Fredericks S; Lin Q; Banu K; Wong G; Rogers NM; Farouk S; Cravedi P; Shingde M; Smith RN; Rosales IA; O'Connell PJ; Colvin RB; Murphy B; Zhang W
    Kidney Int; 2022 Feb; 101(2):288-298. PubMed ID: 34757124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating tubulointerstitial compartments in renal biopsy specimens using a deep learning-based approach for classifying normal and abnormal tubules.
    Hara S; Haneda E; Kawakami M; Morita K; Nishioka R; Zoshima T; Kometani M; Yoneda T; Kawano M; Karashima S; Nambo H
    PLoS One; 2022; 17(7):e0271161. PubMed ID: 35816495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional Neural Networks for the Evaluation of Chronic and Inflammatory Lesions in Kidney Transplant Biopsies.
    Hermsen M; Ciompi F; Adefidipe A; Denic A; Dendooven A; Smith BH; van Midden D; Bräsen JH; Kers J; Stegall MD; Bándi P; Nguyen T; Swiderska-Chadaj Z; Smeets B; Hilbrands LB; van der Laak JAWM
    Am J Pathol; 2022 Oct; 192(10):1418-1432. PubMed ID: 35843265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance and limitations of a supervised deep learning approach for the histopathological Oxford Classification of glomeruli with IgA nephropathy.
    Altini N; Rossini M; Turkevi-Nagy S; Pesce F; Pontrelli P; Prencipe B; Berloco F; Seshan S; Gibier JB; Pedraza Dorado A; Bueno G; Peruzzi L; Rossi M; Eccher A; Li F; Koumpis A; Beyan O; Barratt J; Vo HQ; Mohan C; Nguyen HV; Cicalese PA; Ernst A; Gesualdo L; Bevilacqua V; Becker JU
    Comput Methods Programs Biomed; 2023 Dec; 242():107814. PubMed ID: 37722311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.
    Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P
    JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections.
    Marsh JN; Matlock MK; Kudose S; Liu TC; Stappenbeck TS; Gaut JP; Swamidass SJ
    IEEE Trans Med Imaging; 2018 Dec; 37(12):2718-2728. PubMed ID: 29994669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-Supervised Segmentation of Renal Pathology: An Alternative to Manual Segmentation and Input to Deep Learning Training.
    Kline A; Chung HJ; Rahmani W; Chun J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2688-2691. PubMed ID: 34891805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning segmentation of glomeruli on kidney donor frozen sections.
    Li X; Davis RC; Xu Y; Wang Z; Souma N; Sotolongo G; Bell J; Ellis M; Howell D; Shen X; Lafata KJ; Barisoni L
    J Med Imaging (Bellingham); 2021 Nov; 8(6):067501. PubMed ID: 34950750
    [No Abstract]   [Full Text] [Related]  

  • 13. A U-Net based framework to quantify glomerulosclerosis in digitized PAS and H&E stained human tissues.
    Gallego J; Swiderska-Chadaj Z; Markiewicz T; Yamashita M; Gabaldon MA; Gertych A
    Comput Med Imaging Graph; 2021 Apr; 89():101865. PubMed ID: 33548823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated assessment of glomerulosclerosis and tubular atrophy using deep learning.
    Salvi M; Mogetta A; Gambella A; Molinaro L; Barreca A; Papotti M; Molinari F
    Comput Med Imaging Graph; 2021 Jun; 90():101930. PubMed ID: 33964790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation of Glomeruli Within Trichrome Images Using Deep Learning.
    Kannan S; Morgan LA; Liang B; Cheung MG; Lin CQ; Mun D; Nader RG; Belghasem ME; Henderson JM; Francis JM; Chitalia VC; Kolachalama VB
    Kidney Int Rep; 2019 Jul; 4(7):955-962. PubMed ID: 31317118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Deep Learning Model to Quantify Glomerulosclerosis in Kidney Biopsy Specimens.
    Marsh JN; Liu TC; Wilson PC; Swamidass SJ; Gaut JP
    JAMA Netw Open; 2021 Jan; 4(1):e2030939. PubMed ID: 33471115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex tyramide signal amplification and deep learning.
    Hermsen M; Volk V; Bräsen JH; Geijs DJ; Gwinner W; Kers J; Linmans J; Schaadt NS; Schmitz J; Steenbergen EJ; Swiderska-Chadaj Z; Smeets B; Hilbrands LB; Feuerhake F; van der Laak JAWM
    Lab Invest; 2021 Aug; 101(8):970-982. PubMed ID: 34006891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network.
    Lu D; Heisler M; Lee S; Ding GW; Navajas E; Sarunic MV; Beg MF
    Med Image Anal; 2019 May; 54():100-110. PubMed ID: 30856455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glomerulosclerosis identification in whole slide images using semantic segmentation.
    Bueno G; Fernandez-Carrobles MM; Gonzalez-Lopez L; Deniz O
    Comput Methods Programs Biomed; 2020 Feb; 184():105273. PubMed ID: 31891905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural network approach to the biopsy diagnosis of early acute renal transplant rejection.
    Furness PN; Levesley J; Luo Z; Taub N; Kazi JI; Bates WD; Nicholson ML
    Histopathology; 1999 Nov; 35(5):461-7. PubMed ID: 10583562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.