These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 31488607)
41. Histopathologic findings from 2-year protocol biopsies from a U.S. multicenter kidney transplant trial comparing tarolimus versus cyclosporine: a report of the FK506 Kidney Transplant Study Group. Solez K; Vincenti F; Filo RS Transplantation; 1998 Dec; 66(12):1736-40. PubMed ID: 9884269 [TBL] [Abstract][Full Text] [Related]
42. Predicting clinical endpoints and visual changes with quality-weighted tissue-based renal histological features. Tam KH; Soares MF; Kers J; Sharples EJ; Ploeg RJ; Kaisar M; Rittscher J Front Transplant; 2024; 3():1305468. PubMed ID: 38993786 [TBL] [Abstract][Full Text] [Related]
43. Deep Learning-Based Artificial Intelligence System for Automatic Assessment of Glomerular Pathological Findings in Lupus Nephritis. Zheng Z; Zhang X; Ding J; Zhang D; Cui J; Fu X; Han J; Zhu P Diagnostics (Basel); 2021 Oct; 11(11):. PubMed ID: 34829330 [TBL] [Abstract][Full Text] [Related]
44. Automated Reference Kidney Histomorphometry using a Panoptic Segmentation Neural Network Correlates to Patient Demographics and Creatinine. Ginley B; Lucarelli N; Zee J; Jain S; Han SS; Rodrigues L; Wong ML; Jen KY; Sarder P Proc SPIE Int Soc Opt Eng; 2023 Feb; 12471():. PubMed ID: 37818349 [TBL] [Abstract][Full Text] [Related]
45. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Sharma H; Zerbe N; Klempert I; Hellwich O; Hufnagl P Comput Med Imaging Graph; 2017 Nov; 61():2-13. PubMed ID: 28676295 [TBL] [Abstract][Full Text] [Related]
46. International variation in the interpretation of renal transplant biopsies: report of the CERTPAP Project. Furness PN; Taub N; Kidney Int; 2001 Nov; 60(5):1998-2012. PubMed ID: 11703620 [TBL] [Abstract][Full Text] [Related]
47. Digital reporting of whole-slide images is safe and suitable for assessing organ quality in preimplantation renal biopsies. Eccher A; Neil D; Ciangherotti A; Cima L; Boschiero L; Martignoni G; Ghimenton C; Chilosi M; Giobelli L; Zampicinini L; Casartelli M; Brunelli M Hum Pathol; 2016 Jan; 47(1):115-20. PubMed ID: 26547252 [TBL] [Abstract][Full Text] [Related]
48. Using deep learning for quantification of cellularity and cell lineages in bone marrow biopsies and comparison to normal age-related variation. van Eekelen L; Pinckaers H; van den Brand M; Hebeda KM; Litjens G Pathology; 2022 Apr; 54(3):318-327. PubMed ID: 34772487 [TBL] [Abstract][Full Text] [Related]
49. Diagnosis of early acute renal allograft rejection by evaluation of multiple histological features using a Bayesian belief network. Kazi JI; Furness PN; Nicholson M J Clin Pathol; 1998 Feb; 51(2):108-13. PubMed ID: 9602682 [TBL] [Abstract][Full Text] [Related]
50. Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography. Park HJ; Shin Y; Park J; Kim H; Lee IS; Seo DW; Huh J; Lee TY; Park T; Lee J; Kim KW Korean J Radiol; 2020 Jan; 21(1):88-100. PubMed ID: 31920032 [TBL] [Abstract][Full Text] [Related]
51. An evaluation of the Banff classification of early renal allograft biopsies and correlation with outcome. Bates WD; Davies DR; Welsh K; Gray DW; Fuggle SV; Morris PJ Nephrol Dial Transplant; 1999 Oct; 14(10):2364-9. PubMed ID: 10528659 [TBL] [Abstract][Full Text] [Related]
52. Prognostic significance of microvascular thrombosis in donor kidney allograft biopsies. McCall SJ; Tuttle-Newhall JE; Howell DN; Fields TA Transplantation; 2003 Jun; 75(11):1847-52. PubMed ID: 12811244 [TBL] [Abstract][Full Text] [Related]
53. Deep Learning Accurately Quantifies Plasma Cell Percentages on CD138-Stained Bone Marrow Samples. Fu F; Guenther A; Sakhdari A; McKee TD; Xia D J Pathol Inform; 2022; 13():100011. PubMed ID: 35242448 [TBL] [Abstract][Full Text] [Related]
54. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Fu Y; Mazur TR; Wu X; Liu S; Chang X; Lu Y; Li HH; Kim H; Roach MC; Henke L; Yang D Med Phys; 2018 Nov; 45(11):5129-5137. PubMed ID: 30269345 [TBL] [Abstract][Full Text] [Related]
55. Automatic liver segmentation by integrating fully convolutional networks into active contour models. Guo X; Schwartz LH; Zhao B Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688 [TBL] [Abstract][Full Text] [Related]
56. Multi-radial LBP Features as a Tool for Rapid Glomerular Detection and Assessment in Whole Slide Histopathology Images. Simon O; Yacoub R; Jain S; Tomaszewski JE; Sarder P Sci Rep; 2018 Feb; 8(1):2032. PubMed ID: 29391542 [TBL] [Abstract][Full Text] [Related]
57. Pathologist-level classification of histopathological melanoma images with deep neural networks. Hekler A; Utikal JS; Enk AH; Berking C; Klode J; Schadendorf D; Jansen P; Franklin C; Holland-Letz T; Krahl D; von Kalle C; Fröhling S; Brinker TJ Eur J Cancer; 2019 Jul; 115():79-83. PubMed ID: 31129383 [TBL] [Abstract][Full Text] [Related]
58. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks. Yu C; Xie S; Niu S; Ji Z; Fan W; Yuan S; Liu Q; Chen Q Med Phys; 2019 Oct; 46(10):4502-4519. PubMed ID: 31315159 [TBL] [Abstract][Full Text] [Related]
59. Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features. Tschandl P; Argenziano G; Razmara M; Yap J Br J Dermatol; 2019 Jul; 181(1):155-165. PubMed ID: 30207594 [TBL] [Abstract][Full Text] [Related]
60. A comparison between two semantic deep learning frameworks for the autosomal dominant polycystic kidney disease segmentation based on magnetic resonance images. Bevilacqua V; Brunetti A; Cascarano GD; Guerriero A; Pesce F; Moschetta M; Gesualdo L BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 9):244. PubMed ID: 31830973 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]