These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 31488611)

  • 1. Robust Control in Human Reaching Movements: A Model-Free Strategy to Compensate for Unpredictable Disturbances.
    Crevecoeur F; Scott SH; Cluff T
    J Neurosci; 2019 Oct; 39(41):8135-8148. PubMed ID: 31488611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of reach-to-grasp movement in response to force perturbations.
    Rand MK; Shimansky Y; Stelmach GE; Bloedel JR
    Exp Brain Res; 2004 Jan; 154(1):50-65. PubMed ID: 14530893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling reaching movements with predictable and unpredictable target motion in 10-year-old children and adults.
    Daum MM; Huber S; Krist H
    Exp Brain Res; 2007 Mar; 177(4):483-92. PubMed ID: 17006685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.
    Wang T; Dordevic GS; Shadmehr R
    Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adjustment of the human arm viscoelastic properties to the direction of reaching.
    Frolov AA; Prokopenko RA; Dufossè M; Ouezdou FB
    Biol Cybern; 2006 Feb; 94(2):97-109. PubMed ID: 16344944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Braking of Whole-Arm Reaching Movements Provides Single-Trial Neuromuscular Measures of Movement Cancellation.
    Atsma J; Maij F; Gu C; Medendorp WP; Corneil BD
    J Neurosci; 2018 May; 38(18):4367-4382. PubMed ID: 29636393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prior Movement of One Arm Facilitates Motor Adaptation in the Other.
    Gippert M; Leupold S; Heed T; Howard IS; Villringer A; Nikulin VV; Sehm B
    J Neurosci; 2023 Jun; 43(23):4341-4351. PubMed ID: 37160362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Very Fast Time Scale of Human Motor Adaptation: Within Movement Adjustments of Internal Representations during Reaching.
    Crevecoeur F; Thonnard JL; Lefèvre P
    eNeuro; 2020; 7(1):. PubMed ID: 31949026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback Adaptation to Unpredictable Force Fields in 250 ms.
    Crevecoeur F; Mathew J; Bastin M; Lefèvre P
    eNeuro; 2020; 7(2):. PubMed ID: 32317344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociable effects of the implicit and explicit memory systems on learning control of reaching.
    Hwang EJ; Smith MA; Shadmehr R
    Exp Brain Res; 2006 Aug; 173(3):425-37. PubMed ID: 16506003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of age-related modifications of upper limb motor control strategies in a new dynamic environment.
    Cesqui B; Macrì G; Dario P; Micera S
    J Neuroeng Rehabil; 2008 Nov; 5():31. PubMed ID: 19019228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time course of changes in the long-latency feedback response parallels the fast process of short-term motor adaptation.
    Coltman SK; Gribble PL
    J Neurophysiol; 2020 Aug; 124(2):388-399. PubMed ID: 32639925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System.
    Albert ST; Shadmehr R
    J Neurosci; 2016 Apr; 36(17):4832-45. PubMed ID: 27122039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of sensory information in updating internal models of the effector during arm tracking.
    Vercher JL; Sarès F; Blouin J; Bourdin C; Gauthier G
    Prog Brain Res; 2003; 142():203-22. PubMed ID: 12693263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degraded expression of learned feedforward control in movements released by startle.
    Wright ZA; Carlsen AN; MacKinnon CD; Patton JL
    Exp Brain Res; 2015 Aug; 233(8):2291-300. PubMed ID: 26105751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparing to reach: selecting an adaptive long-latency feedback controller.
    Ahmadi-Pajouh MA; Towhidkhah F; Shadmehr R
    J Neurosci; 2012 Jul; 32(28):9537-45. PubMed ID: 22787039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating objects with internal degrees of freedom: evidence for model-based control.
    Dingwell JB; Mah CD; Mussa-Ivaldi FA
    J Neurophysiol; 2002 Jul; 88(1):222-35. PubMed ID: 12091548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contralateral manual compensation for velocity-dependent force perturbations.
    Jackson CP; Miall RC
    Exp Brain Res; 2008 Jan; 184(2):261-7. PubMed ID: 17973103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.