These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 31488611)
21. Long-latency responses during reaching account for the mechanical interaction between the shoulder and elbow joints. Kurtzer I; Pruszynski JA; Scott SH J Neurophysiol; 2009 Nov; 102(5):3004-15. PubMed ID: 19710379 [TBL] [Abstract][Full Text] [Related]
22. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field. Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292 [TBL] [Abstract][Full Text] [Related]
23. Central modifications of reflex parameters may underlie the fastest arm movements. Adamovich SV; Levin MF; Feldman AG J Neurophysiol; 1997 Mar; 77(3):1460-9. PubMed ID: 9084611 [TBL] [Abstract][Full Text] [Related]
24. Rapid feedback responses correlate with reach adaptation and properties of novel upper limb loads. Cluff T; Scott SH J Neurosci; 2013 Oct; 33(40):15903-14. PubMed ID: 24089496 [TBL] [Abstract][Full Text] [Related]
25. The nervous system uses nonspecific motor learning in response to random perturbations of varying nature. Wei K; Wert D; Körding K J Neurophysiol; 2010 Dec; 104(6):3053-63. PubMed ID: 20861427 [TBL] [Abstract][Full Text] [Related]
26. Force field adaptation can be learned using vision in the absence of proprioceptive error. Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280 [TBL] [Abstract][Full Text] [Related]
27. Online modification of goal-directed control in human reaching movements. De Comite A; Crevecoeur F; Lefèvre P J Neurophysiol; 2021 May; 125(5):1883-1898. PubMed ID: 33852821 [TBL] [Abstract][Full Text] [Related]
28. Beyond muscles stiffness: importance of state-estimation to account for very fast motor corrections. Crevecoeur F; Scott SH PLoS Comput Biol; 2014 Oct; 10(10):e1003869. PubMed ID: 25299461 [TBL] [Abstract][Full Text] [Related]
29. Rapid Visuomotor Corrective Responses during Transport of Hand-Held Objects Incorporate Novel Object Dynamics. Diamond JS; Nashed JY; Johansson RS; Wolpert DM; Flanagan JR J Neurosci; 2015 Jul; 35(29):10572-80. PubMed ID: 26203151 [TBL] [Abstract][Full Text] [Related]
30. Accuracy of internal dynamics models in limb movements depends on stability. Milner TE Exp Brain Res; 2004 Nov; 159(2):172-84. PubMed ID: 15243728 [TBL] [Abstract][Full Text] [Related]
31. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model. Stavisky SD; Kao JC; Ryu SI; Shenoy KV J Neurosci; 2017 Feb; 37(7):1721-1732. PubMed ID: 28087767 [TBL] [Abstract][Full Text] [Related]
32. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning. Hosseini EA; Nguyen KP; Joiner WM PLoS Comput Biol; 2017 May; 13(5):e1005492. PubMed ID: 28481891 [TBL] [Abstract][Full Text] [Related]
33. Threshold control of arm posture and movement adaptation to load. Foisy M; Feldman AG Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611 [TBL] [Abstract][Full Text] [Related]
34. Age-related changes in the control of perturbation-evoked and voluntary arm movements. Weaver TB; Hamilton LE; Tokuno CD Clin Neurophysiol; 2012 Oct; 123(10):2025-33. PubMed ID: 22541741 [TBL] [Abstract][Full Text] [Related]
35. Divided attention impairs human motor adaptation but not feedback control. Taylor JA; Thoroughman KA J Neurophysiol; 2007 Jul; 98(1):317-26. PubMed ID: 17460104 [TBL] [Abstract][Full Text] [Related]
36. Feedforward and Feedback Control Share an Internal Model of the Arm's Dynamics. Maeda RS; Cluff T; Gribble PL; Pruszynski JA J Neurosci; 2018 Dec; 38(49):10505-10514. PubMed ID: 30355628 [TBL] [Abstract][Full Text] [Related]
37. Did We Get Sensorimotor Adaptation Wrong? Implicit Adaptation as Direct Policy Updating Rather than Forward-Model-Based Learning. Hadjiosif AM; Krakauer JW; Haith AM J Neurosci; 2021 Mar; 41(12):2747-2761. PubMed ID: 33558432 [TBL] [Abstract][Full Text] [Related]
38. Learning and generation of goal-directed arm reaching from scratch. Kambara H; Kim K; Shin D; Sato M; Koike Y Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565 [TBL] [Abstract][Full Text] [Related]
39. Different Control Strategies Drive Interlimb Differences in Performance and Adaptation during Reaching Movements in Novel Dynamics. Córdova Bulens D; Cluff T; Blondeau L; Moore RT; Lefèvre P; Crevecoeur F eNeuro; 2023 Apr; 10(4):. PubMed ID: 36941058 [TBL] [Abstract][Full Text] [Related]
40. Motion state-dependent motor learning based on explicit visual feedback is quickly recalled, but is less stable than adaptation to physical perturbations. Zhou W; Kruse EA; Brower R; North R; Joiner WM J Neurophysiol; 2022 Oct; 128(4):854-871. PubMed ID: 36043804 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]