These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31488623)

  • 1. How humans initiate energy optimization and converge on their optimal gaits.
    Selinger JC; Wong JD; Simha SN; Donelan JM
    J Exp Biol; 2019 Oct; 222(Pt 19):. PubMed ID: 31488623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is natural variability in gait sufficient to initiate spontaneous energy optimization in human walking?
    Wong JD; Selinger JC; Donelan JM
    J Neurophysiol; 2019 May; 121(5):1848-1855. PubMed ID: 30864867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy optimization is a major objective in the real-time control of step width in human walking.
    Abram SJ; Selinger JC; Donelan JM
    J Biomech; 2019 Jun; 91():85-91. PubMed ID: 31151794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing the gradient of energetic cost does not initiate adaptation in human walking.
    Simha SN; Wong JD; Selinger JC; Abram SJ; Donelan JM
    J Neurophysiol; 2021 Aug; 126(2):440-450. PubMed ID: 34161744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Humans Can Continuously Optimize Energetic Cost during Walking.
    Selinger JC; O'Connor SM; Wong JD; Donelan JM
    Curr Biol; 2015 Sep; 25(18):2452-6. PubMed ID: 26365256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mechatronic System for Studying Energy Optimization During Walking.
    Simha SN; Wong JD; Selinger JC; Donelan JM
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1416-1425. PubMed ID: 31107655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General variability leads to specific adaptation toward optimal movement policies.
    Abram SJ; Poggensee KL; Sánchez N; Simha SN; Finley JM; Collins SH; Donelan JM
    Curr Biol; 2022 May; 32(10):2222-2232.e5. PubMed ID: 35537453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of metabolic and temporal costs to human gait selection.
    Summerside EM; Kram R; Ahmed AA
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29925582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer optimization of a minimal biped model discovers walking and running.
    Srinivasan M; Ruina A
    Nature; 2006 Jan; 439(7072):72-5. PubMed ID: 16155564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy optimization during walking involves implicit processing.
    McAllister MJ; Blair RL; Donelan JM; Selinger JC
    J Exp Biol; 2021 Sep; 224(17):. PubMed ID: 34521117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture.
    McNeill Alexander R
    Am J Hum Biol; 2002; 14(5):641-8. PubMed ID: 12203818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compliant walking appears metabolically advantageous at extreme step lengths.
    Kim J; Bertram JEA
    Gait Posture; 2018 Jul; 64():84-89. PubMed ID: 29883939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrained optimization in human running.
    Gutmann AK; Jacobi B; Butcher MT; Bertram JE
    J Exp Biol; 2006 Feb; 209(Pt 4):622-32. PubMed ID: 16449557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The high cost of swing leg circumduction during human walking.
    Shorter KA; Wu A; Kuo AD
    Gait Posture; 2017 May; 54():265-270. PubMed ID: 28371740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct fast and slow processes contribute to the selection of preferred step frequency during human walking.
    Snaterse M; Ton R; Kuo AD; Donelan JM
    J Appl Physiol (1985); 2011 Jun; 110(6):1682-90. PubMed ID: 21393467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and slow processes underlie the selection of both step frequency and walking speed.
    Pagliara R; Snaterse M; Donelan JM
    J Exp Biol; 2014 Aug; 217(Pt 16):2939-46. PubMed ID: 24902746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained optimization in human walking: cost minimization and gait plasticity.
    Bertram JE
    J Exp Biol; 2005 Mar; 208(Pt 6):979-91. PubMed ID: 15767300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple walking speed-frequency relations are predicted by constrained optimization.
    Bertram JE; Ruina A
    J Theor Biol; 2001 Apr; 209(4):445-53. PubMed ID: 11319893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.