These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31488623)

  • 21. Parametric Modeling of Human Gradient Walking for Predicting Minimum Energy Expenditure.
    Saborit G; Casinos A
    Comput Math Methods Med; 2015; 2015():407156. PubMed ID: 26417377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interlimb Coordination During Step-to-Step Transition and Gait Performance.
    Sousa AS; Tavares JM
    J Mot Behav; 2015; 47(6):563-74. PubMed ID: 25893693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of blood oxygen and carbon dioxide sensing to the energetic optimization of human walking.
    Wong JD; O'Connor SM; Selinger JC; Donelan JM
    J Neurophysiol; 2017 Aug; 118(2):1425-1433. PubMed ID: 28637813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bilevel Optimization for Cost Function Determination in Dynamic Simulation of Human Gait.
    Nguyen VQ; Johnson RT; Sup FC; Umberger BR
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1426-1435. PubMed ID: 31199264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Domestic cat walking parallels human constrained optimization: optimization strategies and the comparison of normal and sensory deficient individuals.
    Bertram JE; Gutmann A; Randev J; Hulliger M
    Hum Mov Sci; 2014 Aug; 36():154-66. PubMed ID: 24974156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies.
    Falisse A; Serrancolí G; Dembia CL; Gillis J; Jonkers I; De Groote F
    J R Soc Interface; 2019 Aug; 16(157):20190402. PubMed ID: 31431186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intersegmental kinematics coordination in unilateral peripheral and central origin: Effect on gait mechanism?
    Wallard L; Boulet S; Cornu O; Dubuc JE; Mahaudens P; Postlethwaite D; Van Cauter M; Detrembleur C
    Gait Posture; 2018 May; 62():124-131. PubMed ID: 29547792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A metabolic energy expenditure model with a continuous first derivative and its application to predictive simulations of gait.
    Koelewijn AD; Dorschky E; van den Bogert AJ
    Comput Methods Biomech Biomed Engin; 2018 Jun; 21(8):521-531. PubMed ID: 30027769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The cost of walking downhill: is the preferred gait energetically optimal?
    Hunter LC; Hendrix EC; Dean JC
    J Biomech; 2010 Jul; 43(10):1910-5. PubMed ID: 20399434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rising Energetic Cost of Walking Predicts Gait Speed Decline With Aging.
    Schrack JA; Zipunnikov V; Simonsick EM; Studenski S; Ferrucci L
    J Gerontol A Biol Sci Med Sci; 2016 Jul; 71(7):947-53. PubMed ID: 26850913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of muscle energy models for simulating human walking in three dimensions.
    Miller RH
    J Biomech; 2014 Apr; 47(6):1373-81. PubMed ID: 24581797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Minimizing center of mass vertical movement increases metabolic cost in walking.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2005 Dec; 99(6):2099-107. PubMed ID: 16051716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring.
    Cai X; Han G; Song X; Wang J
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2618-2627. PubMed ID: 28092516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study of the stability of generalized wave gaits.
    Zhang CD; Song SM
    Math Biosci; 1993 May; 115(1):1-32. PubMed ID: 8507986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of walking in children.
    Jeng SF; Liao HF; Lai JS; Hou JW
    Med Sci Sports Exerc; 1997 Mar; 29(3):370-6. PubMed ID: 9139176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A theory of metabolic costs for bipedal gaits.
    Minetti AE; Alexander RM
    J Theor Biol; 1997 Jun; 186(4):467-76. PubMed ID: 9278722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.