BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31489377)

  • 1. Combinatorial morphogenetic and mechanical cues to mimic bone development for defect repair.
    Herberg S; McDermott AM; Dang PN; Alt DS; Tang R; Dawahare JH; Varghai D; Shin JY; McMillan A; Dikina AD; He F; Lee YB; Cheng Y; Umemori K; Wong PC; Park H; Boerckel JD; Alsberg E
    Sci Adv; 2019 Aug; 5(8):eaax2476. PubMed ID: 31489377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration.
    McDermott AM; Herberg S; Mason DE; Collins JM; Pearson HB; Dawahare JH; Tang R; Patwa AN; Grinstaff MW; Kelly DJ; Alsberg E; Boerckel JD
    Sci Transl Med; 2019 Jun; 11(495):. PubMed ID: 31167930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold-free human mesenchymal stem cell construct geometry regulates long bone regeneration.
    Herberg S; Varghai D; Alt DS; Dang PN; Park H; Cheng Y; Shin JY; Dikina AD; Boerckel JD; Rolle MW; Alsberg E
    Commun Biol; 2021 Jan; 4(1):89. PubMed ID: 33469154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification.
    Dang PN; Dwivedi N; Phillips LM; Yu X; Herberg S; Bowerman C; Solorio LD; Murphy WL; Alsberg E
    Stem Cells Transl Med; 2016 Feb; 5(2):206-17. PubMed ID: 26702127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endochondral Ossification in Critical-Sized Bone Defects via Readily Implantable Scaffold-Free Stem Cell Constructs.
    Dang PN; Herberg S; Varghai D; Riazi H; Varghai D; McMillan A; Awadallah A; Phillips LM; Jeon O; Nguyen MK; Dwivedi N; Yu X; Murphy WL; Alsberg E
    Stem Cells Transl Med; 2017 Jul; 6(7):1644-1659. PubMed ID: 28661587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual non-viral gene delivery from microparticles within 3D high-density stem cell constructs for enhanced bone tissue engineering.
    McMillan A; Nguyen MK; Gonzalez-Fernandez T; Ge P; Yu X; Murphy WL; Kelly DJ; Alsberg E
    Biomaterials; 2018 Apr; 161():240-255. PubMed ID: 29421560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant transforming growth factor-beta1 induces endochondral bone in the baboon and synergizes with recombinant osteogenic protein-1 (bone morphogenetic protein-7) to initiate rapid bone formation.
    Ripamonti U; Duneas N; Van Den Heever B; Bosch C; Crooks J
    J Bone Miner Res; 1997 Oct; 12(10):1584-95. PubMed ID: 9333119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-density human mesenchymal stem cell rings with spatiotemporally-controlled morphogen presentation as building blocks for engineering bone diaphyseal tissue.
    Herberg S; Varghai D; Cheng Y; Dikina AD; Dang PN; Rolle MW; Alsberg E
    Nanotheranostics; 2018; 2(2):128-143. PubMed ID: 29577017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming growth factor-beta1 supports the rapid morphogenesis of heterotopic endochondral bone initiated by human osteogenic protein-1 via the synergistic upregulation of molecular markers.
    Matsaba T; Ramoshebi LN; Crooks J; Ripamonti U
    Growth Factors; 2001; 19(2):73-86. PubMed ID: 11769973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Up-regulation of bone morphogenetic protein receptor IB by growth factors enhances BMP-2-induced human bone cell functions.
    Singhatanadgit W; Salih V; Olsen I
    J Cell Physiol; 2006 Dec; 209(3):912-22. PubMed ID: 17001689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connective tissue growth factor (CTGF) acts as a downstream mediator of TGF-beta1 to induce mesenchymal cell condensation.
    Song JJ; Aswad R; Kanaan RA; Rico MC; Owen TA; Barbe MF; Safadi FF; Popoff SN
    J Cell Physiol; 2007 Feb; 210(2):398-410. PubMed ID: 17111364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets.
    Gurkan UA; El Assal R; Yildiz SE; Sung Y; Trachtenberg AJ; Kuo WP; Demirci U
    Mol Pharm; 2014 Jul; 11(7):2151-9. PubMed ID: 24495169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small molecule inhibitor of TGF-β signaling enables robust osteogenesis of autologous GMSCs to successfully repair minipig severe maxillofacial bone defects.
    Shi A; Heinayati A; Bao D; Liu H; Ding X; Tong X; Wang L; Wang B; Qin H
    Stem Cell Res Ther; 2019 Jun; 10(1):172. PubMed ID: 31196174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of Smads, the TGF-beta family intracellular signaling components during endochondral ossification.
    Sakou T; Onishi T; Yamamoto T; Nagamine T; Sampath Tk; Ten Dijke P
    J Bone Miner Res; 1999 Jul; 14(7):1145-52. PubMed ID: 10404014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combined mechanism of bone morphogenetic protein- and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells.
    Bolander J; Ji W; Geris L; Bloemen V; Chai YC; Schrooten J; Luyten FP
    Eur Cell Mater; 2016 Jan; 31():11-25. PubMed ID: 26728496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock wave application enhances pertussis toxin protein-sensitive bone formation of segmental femoral defect in rats.
    Chen YJ; Kuo YR; Yang KD; Wang CJ; Huang HC; Wang FS
    J Bone Miner Res; 2003 Dec; 18(12):2169-79. PubMed ID: 14672352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor-beta 1: induction of bone morphogenetic protein genes expression during endochondral bone formation in the baboon, and synergistic interaction with osteogenic protein-1 (BMP-7).
    Duneas N; Crooks J; Ripamonti U
    Growth Factors; 1998; 15(4):259-77. PubMed ID: 9714911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone-conditioned medium contributes to initiation and progression of osteogenesis by exhibiting synergistic TGF-β1/BMP-2 activity.
    Asparuhova MB; Caballé-Serrano J; Buser D; Chappuis V
    Int J Oral Sci; 2018 Jun; 10(2):20. PubMed ID: 29895828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential role of transforming growth factor beta in fracture healing.
    Rosier RN; O'Keefe RJ; Hicks DG
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S294-300. PubMed ID: 9917649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming growth factor-beta isoforms and the induction of bone formation: implications for reconstructive craniofacial surgery.
    Ripamonti U; Ferretti C; Teare J; Blann L
    J Craniofac Surg; 2009 Sep; 20(5):1544-55. PubMed ID: 19816294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.