These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31489888)

  • 21. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.
    Kim M; Lee SK; Ham YH; Yang YS; Kwon JK; Kwon KH
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6283-6. PubMed ID: 22962737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of enhanced piezoelectric energy harvester induced by human motion.
    Minami Y; Nakamachi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1627-30. PubMed ID: 23366218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of a Cantilevered Piezoelectric Energy Harvester in Different Orientations for Rotational Motion.
    Su WJ; Lin JH; Li WC
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.
    Zhang H; Afzalul K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):1016-23. PubMed ID: 24859665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibration Energy Harvesting by Means of Piezoelectric Patches: Application to Aircrafts.
    Tommasino D; Moro F; Bernay B; De Lumley Woodyear T; de Pablo Corona E; Doria A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing Output Power of a Cantilever-Based Flapping Airflow Energy Harvester Using External Mechanical Interventions.
    Wang L; Zhu D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Direction Self-Tuning Two-Dimensional Piezoelectric Vibration Energy Harvester.
    Zhao H; Wei X; Zhong Y; Wang P
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on the Critical Wind Speed of a Resonant Cavity Piezoelectric Energy Harvester Driven by Driving Wind Pressure.
    Li X; Li Z; Liu Q; Shan X
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31805751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fully Integrated High-Performance MEMS Energy Harvester for Mechanical and Contactless Magnetic Excitation in Resonance and at Low Frequencies.
    Bodduluri MT; Dankwort T; Lisec T; Grünzig S; Khare A; Ahmed M; Gojdka B
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical and Experimental Investigation of a Rotational Magnetic Couple Piezoelectric Energy Harvester.
    Sun F; Dong R; Zhou R; Xu F; Mei X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analytical Modelling and Optimization of a Piezoelectric Cantilever Energy Harvester with In-Span Attachment.
    Homayouni-Amlashi A; Mohand-Ousaid A; Rakotondrabe M
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32545825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Research on a rotary piezoelectric wind energy harvester with bilateral excitation.
    He L; Zheng X; Li W; Gu X; Han Y; Cheng G
    Rev Sci Instrum; 2023 Feb; 94(2):025004. PubMed ID: 36859045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H.
    Xu W; Ao H; Zhou N; Song Z; Jiang H
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive Analysis of the Energy Harvesting Performance of a Fe-Ga Based Cantilever Harvester in Free Excitation and Base Excitation Mode.
    Liu H; Cong C; Zhao Q; Ma K
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of Non-Uniform Deformation on Piezoelectric Circular Diaphragm Energy Harvester with a Ring-Shaped Ceramic Disk.
    Xu C; Li Y; Yang T
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33126540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance.
    Zhang Y; Zheng R; Shimono K; Kaizuka T; Nakano K
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Frequency Up-Converted Hybrid Energy Harvester Using Transverse Impact-Driven Piezoelectric Bimorph for Human-Limb Motion.
    Halim MA; Kabir MH; Cho H; Park JY
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31618939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.