These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31489920)

  • 1. Prediction of Potential miRNA-Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder.
    Zhang L; Chen X; Yin J
    Cells; 2019 Sep; 8(9):. PubMed ID: 31489920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy.
    Wang CC; Chen X; Yin J; Qu J
    RNA Biol; 2019 Mar; 16(3):257-269. PubMed ID: 30646823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DRMDA: deep representations-based miRNA-disease association prediction.
    Chen X; Gong Y; Zhang DH; You ZH; Li ZW
    J Cell Mol Med; 2018 Jan; 22(1):472-485. PubMed ID: 28857494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variational graph auto-encoders for miRNA-disease association prediction.
    Ding Y; Tian LP; Lei X; Liao B; Wu FX
    Methods; 2021 Aug; 192():25-34. PubMed ID: 32798654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction.
    Chen X; Zhou Z; Zhao Y
    RNA Biol; 2018; 15(6):807-818. PubMed ID: 29619882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Semi-Supervised Learning Method for MiRNA-Disease Association Prediction Based on Variational Autoencoder.
    Ji C; Wang Y; Gao Z; Li L; Ni J; Zheng C
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2049-2059. PubMed ID: 33735084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-belief network for predicting potential miRNA-disease associations.
    Chen X; Li TH; Zhao Y; Wang CC; Zhu CC
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RFSMMA: A New Computational Model to Identify and Prioritize Potential Small Molecule-MiRNA Associations.
    Wang CC; Chen X; Qu J; Sun YZ; Li JQ
    J Chem Inf Model; 2019 Apr; 59(4):1668-1679. PubMed ID: 30840454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.
    You ZH; Huang ZA; Zhu Z; Yan GY; Li ZW; Wen Z; Chen X
    PLoS Comput Biol; 2017 Mar; 13(3):e1005455. PubMed ID: 28339468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GIMDA: Graphlet interaction-based MiRNA-disease association prediction.
    Chen X; Guan NN; Li JQ; Yan GY
    J Cell Mol Med; 2018 Mar; 22(3):1548-1561. PubMed ID: 29272076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel computational model based on super-disease and miRNA for potential miRNA-disease association prediction.
    Chen X; Jiang ZC; Xie D; Huang DS; Zhao Q; Yan GY; You ZH
    Mol Biosyst; 2017 May; 13(6):1202-1212. PubMed ID: 28470244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of potential miRNA-disease associations based on stacked autoencoder.
    Wang CC; Li TH; Huang L; Chen X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35176761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ensemble of decision tree reveals potential miRNA-disease associations.
    Chen X; Zhu CC; Yin J
    PLoS Comput Biol; 2019 Jul; 15(7):e1007209. PubMed ID: 31329575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction.
    Chen X; Xie D; Wang L; Zhao Q; You ZH; Liu H
    Bioinformatics; 2018 Sep; 34(18):3178-3186. PubMed ID: 29701758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico prediction of potential miRNA-disease association using an integrative bioinformatics approach based on kernel fusion.
    Guan NN; Wang CC; Zhang L; Huang L; Li JQ; Piao X
    J Cell Mol Med; 2020 Jan; 24(1):573-587. PubMed ID: 31747722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction.
    Chen X; Huang L
    PLoS Comput Biol; 2017 Dec; 13(12):e1005912. PubMed ID: 29253885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA-disease association prediction.
    Chen X; Niu YW; Wang GH; Yan GY
    J Transl Med; 2017 Dec; 15(1):251. PubMed ID: 29233191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion.
    Chen X; Sun LG; Zhao Y
    Brief Bioinform; 2021 Jan; 22(1):485-496. PubMed ID: 31927572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.