BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31490256)

  • 1. Benzodiazepines Suppress Neuromodulatory Effects of Pudendal Nerve Stimulation on Rat Bladder Nociception.
    Ness TJ; McNaught J; Clodfelder-Miller B; Nelson DE; Su X
    Anesth Analg; 2020 Apr; 130(4):1077-1084. PubMed ID: 31490256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal mechanisms of pudendal nerve stimulation-induced inhibition of bladder hypersensitivity in rats.
    Ness TJ; DeWitte C; McNaught J; Clodfelder-Miller B; Su X
    Neurosci Lett; 2018 Nov; 686():181-185. PubMed ID: 30218768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medications used to treat bladder disorders may alter effects of neuromodulation.
    Ness TJ; McNaught J; Clodfelder-Miller B; Su X
    Neurourol Urodyn; 2020 Jun; 39(5):1313-1320. PubMed ID: 32330365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromodulatory effects of pudendal nerve stimulation on bladder hypersensitivity are present in opioid-pretreated rats.
    Ness TJ; McNaught J; Clodfelder-Miller B; Nelson DE; Su X
    Reg Anesth Pain Med; 2019 Sep; ():. PubMed ID: 31488554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening and Optimization of Nerve Targets and Parameters Reveals Inhibitory Effect of Pudendal Stimulation on Rat Bladder Hypersensitivity.
    Ness TJ; Randich A; Nelson DE; Su X
    Reg Anesth Pain Med; 2016; 41(6):737-743. PubMed ID: 27685349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analgesic effect of ADX71441, a positive allosteric modulator (PAM) of GABA
    Kannampalli P; Poli SM; Boléa C; Sengupta JN
    Neuropharmacology; 2017 Nov; 126():1-11. PubMed ID: 28823612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic and intrathecal baclofen produce bladder antinociception in rats.
    Ness TJ; Randich A; Su X; DeWitte C; Hildebrand K
    BMC Urol; 2021 Oct; 21(1):139. PubMed ID: 34607587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of glycine in nociceptive and non-nociceptive bladder reflexes and pudendal afferent inhibition of these reflexes in cats.
    Rogers MJ; Shen B; Reese JN; Xiao Z; Wang J; Lee A; Roppolo JR; de Groat WC; Tai C
    Neurourol Urodyn; 2016 Sep; 35(7):798-804. PubMed ID: 26147494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic benzodiazepine treatment does not alter interactions between positive GABA(A) modulators and flumazenil or pentylenetetrazole in monkeys.
    Gerak LR; France CP
    Behav Pharmacol; 2011 Feb; 22(1):49-57. PubMed ID: 21516176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potency of positive gamma-aminobutyric acid(A) modulators to substitute for a midazolam discriminative stimulus in untreated monkeys does not predict potency to attenuate a flumazenil discriminative stimulus in diazepam-treated monkeys.
    McMahon LR; Gerak LR; France CP
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1227-35. PubMed ID: 11504825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric Assessment of Spinal Cord Stimulation on Bladder Pain-Like Responses in Rats.
    Ness TJ; Su X
    Neuromodulation; 2022 Dec; 25(8):1134-1140. PubMed ID: 35088748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of opioids on mechanosensitive pelvic nerve afferent fibers innervating the urinary bladder of the rat.
    Su X; Sengupta JN; Gebhart GF
    J Neurophysiol; 1997 Mar; 77(3):1566-80. PubMed ID: 9084620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rostral ventral medulla modulation of the visceromotor reflex evoked by urinary bladder distension in female rats.
    Randich A; Mebane H; DeBerry JJ; Ness TJ
    J Pain; 2008 Oct; 9(10):920-6. PubMed ID: 18619908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of spinal metabotropic glutamate receptor 5 in pudendal inhibition of the nociceptive bladder reflex in cats.
    Reese JN; Rogers MJ; Xiao Z; Shen B; Wang J; Schwen Z; Roppolo JR; de Groat WC; Tai C
    Am J Physiol Renal Physiol; 2015 Apr; 308(8):F832-8. PubMed ID: 25673810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Midazolam and other benzodiazepines.
    Olkkola KT; Ahonen J
    Handb Exp Pharmacol; 2008; (182):335-60. PubMed ID: 18175099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vigor of visceromotor responses to urinary bladder distension in rats increases with repeated trials and stimulus intensity.
    Castroman P; Ness TJ
    Neurosci Lett; 2001 Jun; 306(1-2):97-100. PubMed ID: 11403967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonism of the discriminative stimulus effects of positive gamma-aminobutyric acid(A) modulators in rhesus monkeys discriminating midazolam.
    Lelas S; Gerak LR; France CP
    J Pharmacol Exp Ther; 2000 Sep; 294(3):902-8. PubMed ID: 10945839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory effects of diazepam and midazolam on Ca2+ and K+ channels in canine tracheal smooth muscle cells.
    Yamakage M; Matsuzaki T; Tsujiguchi N; Honma Y; Namiki A
    Anesthesiology; 1999 Jan; 90(1):197-207. PubMed ID: 9915329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal neurochemical mechanisms of acute stress-induced visceral hypersensitivity in healthy rats.
    Ness TJ; DeWitte C; DeBerry JJ
    Neurosci Lett; 2022 Jan; 770():136401. PubMed ID: 34929317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term effects of intravenous benzodiazepines on autonomic neurocardiac regulation in humans: a comparison between midazolam, diazepam, and lorazepam.
    Agelink MW; Majewski TB; Andrich J; Mueck-Weymann M
    Crit Care Med; 2002 May; 30(5):997-1006. PubMed ID: 12006794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.