These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 314903)

  • 1. Mechanisms of compensation for vestibular deficits in the frog. II. Modification of the inhibitory Pathways.
    Dieringer N; Precht W
    Exp Brain Res; 1979 Jul; 36(2):329-357. PubMed ID: 314903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of compensation for vestibular deficits in the frog. I. Modification of the excitatory commissural system.
    Dieringer N; Precht W
    Exp Brain Res; 1979 Jul; 36(2):311-28. PubMed ID: 226388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological and electrophysiological consequences of unilateral pre- versus postganglionic vestibular lesions in the frog.
    Kunkel AW; Dieringer N
    J Comp Physiol A; 1994 May; 174(5):621-32. PubMed ID: 8006858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular nuclear neuron activity in chronically hemilabyrinthectomized cats.
    Ried S; Maioli C; Precht W
    Acta Otolaryngol; 1984; 98(1-2):1-13. PubMed ID: 6087600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar control of vestibular neurons of the frog.
    Magherini PC; Giretti ML; Precht W
    Pflugers Arch; 1975 Apr; 356(2):99-109. PubMed ID: 1080272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing of bilateral cerebellar output evoked by unilateral vestibular stimulation in the frog.
    Dieringer N; Precht W
    Pflugers Arch; 1979 May; 380(1):79-84. PubMed ID: 313042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plane-specific brainstem commissural inhibition in frog second-order semicircular canal neurons.
    Holler S; Straka H
    Exp Brain Res; 2001 Mar; 137(2):190-6. PubMed ID: 11315547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for an alteration in brainstem cholinergic pathways following unilateral labyrinthectomy in the frog.
    Kasik P; Cochran SL; Dieringer N; Precht W
    Brain Res; 1986 Jan; 363(1):188-91. PubMed ID: 3484989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog.
    Cochran SL; Kasik P; Precht W
    Synapse; 1987; 1(1):102-23. PubMed ID: 2850617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential dynamic processing of afferent signals in frog tonic and phasic second-order vestibular neurons.
    Pfanzelt S; Rössert C; Rohregger M; Glasauer S; Moore LE; Straka H
    J Neurosci; 2008 Oct; 28(41):10349-62. PubMed ID: 18842894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gradual and reversible central vestibular reorganization in frog after selective labyrinthine nerve branch lesions.
    Goto F; Straka H; Dieringer N
    Exp Brain Res; 2002 Dec; 147(3):374-86. PubMed ID: 12428145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic responses of vestibular cells during spinal decompensation.
    Tolu E; Mameli O; Azzena MT; Azzena GB
    Physiol Behav; 1980 Nov; 25(5):637-40. PubMed ID: 7443825
    [No Abstract]   [Full Text] [Related]  

  • 13. Uncrossed disynaptic inhibition of second-order vestibular neurons and its interaction with monosynaptic excitation from vestibular nerve afferent fibers in the frog.
    Straka H; Dieringer N
    J Neurophysiol; 1996 Nov; 76(5):3087-101. PubMed ID: 8930257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcerebellar inhibitory interaction between the bilateral vestibular nuclei and its modulation by cerebellocortical activity.
    Furuya N; Kawano K; Shimazu H
    Exp Brain Res; 1976 Jul; 25(I):447-63. PubMed ID: 954888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastic changes underlying vestibular compensation in the guinea-pig persist in isolated, in vitro whole brain preparations.
    Vibert N; Babalian A; Serafin M; Gasc JP; Mühlethaler M; Vidal PP
    Neuroscience; 1999; 93(2):413-32. PubMed ID: 10465424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional organization of the vestibular input to ocular motoneurons of the frog.
    Magherini PC; Precht W; Schwindt PC
    Pflugers Arch; 1974 Jun; 349(2):149-58. PubMed ID: 4368734
    [No Abstract]   [Full Text] [Related]  

  • 17. Modification of synaptic input following unilateral labyrinthectomy.
    Dieringer N; Precht W
    Nature; 1977 Sep; 269(5627):431-3. PubMed ID: 198672
    [No Abstract]   [Full Text] [Related]  

  • 18. Excitatory and inhibitory vestibular pathways to the extraocular motor nuclei in goldfish.
    Graf W; Spencer R; Baker H; Baker R
    J Neurophysiol; 1997 May; 77(5):2765-79. PubMed ID: 9163391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional organization of the dogfish vestibulocerebellum.
    Montgomery JC
    Brain Behav Evol; 1982; 20(1-2):118-28. PubMed ID: 7104667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological and pharmacological characterization of vestibular inputs to identified frog abducens motoneurons and internuclear neurons in vitro.
    Straka H; Dieringer N
    Eur J Neurosci; 1993 Mar; 5(3):251-60. PubMed ID: 8261106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.