These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 314903)

  • 21. Lesion-induced vestibular plasticity in the frog: are N-methyl-D-aspartate receptors involved?
    Knöpfel T; Dieringer N
    Exp Brain Res; 1988; 72(1):129-34. PubMed ID: 2901979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased projection of ascending dorsal root fibers to vestibular nuclei after hemilabyrinthectomy in the frog.
    Dieringer N; Künzle H; Precht W
    Exp Brain Res; 1984; 55(3):574-8. PubMed ID: 6332031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mechanisms of brainstem plasticity. The vestibular compensation model.
    Darlington CL; Flohr H; Smith PF
    Mol Neurobiol; 1991; 5(2-4):355-68. PubMed ID: 1668392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spinal compensation for postural deficits after hemilabyrinthectomy?
    Straka H; Kunkel A; Dieringer N
    Neuroreport; 1993 Sep; 4(9):1071-4. PubMed ID: 8219030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinal plasticity after hemilabyrinthectomy and its relation to postural recovery in the frog.
    Straka H; Dieringer N
    J Neurophysiol; 1995 Apr; 73(4):1617-31. PubMed ID: 7643171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dogfish horizontal canal system: responses of primary afferent, vestibular and cerebellar neurons to rotational stimulation.
    Montgomery JC
    Neuroscience; 1980; 5(10):1761-9. PubMed ID: 7432620
    [No Abstract]   [Full Text] [Related]  

  • 27. Peripheral organization of the vestibular efferent system in the frog: an electrophysiological study.
    Prigioni I; Valli P; Casella C
    Brain Res; 1983 Jun; 269(1):83-90. PubMed ID: 6603251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Canal-specific excitation and inhibition of frog second-order vestibular neurons.
    Straka H; Biesdorf S; Dieringer N
    J Neurophysiol; 1997 Sep; 78(3):1363-72. PubMed ID: 9310427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of central vestibular neurons fired by stimulation of the saccular nerve.
    Wilson VJ; Gacek RR; Uchino Y; Susswein AJ
    Brain Res; 1978 Mar; 143(2):251-61. PubMed ID: 630408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Responses of neurons of lizard's, Lacerta viridis, vestibular nuclei to electrical stimulation of the ipsi- and contralateral VIIIth nerves.
    Richter A; Precht W; Ozawa S
    Pflugers Arch; 1975 Mar; 355(1):85-94. PubMed ID: 1171430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Topographical representation of vestibulo-ocular reflexes in rabbit cerebellar flocculus.
    Ito M; Orlov I; Yamamoto M
    Neuroscience; 1982 Jul; 7(7):1657-64. PubMed ID: 7121830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Convergence pattern of uncrossed excitatory and inhibitory semicircular canal-specific inputs onto second-order vestibular neurons of frogs. Organization of vestibular side loops.
    Straka H; Dieringer N
    Exp Brain Res; 2000 Dec; 135(4):462-73. PubMed ID: 11156310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cerebella control of the vestibulospinal tract cells in rabbit.
    Akaike T; Fanardjian VV; Ito M; Nakajima H
    Exp Brain Res; 1973 Dec; 18(5):446-63. PubMed ID: 4794880
    [No Abstract]   [Full Text] [Related]  

  • 34. Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat.
    De Zeeuw CI; Berrebi AS
    Eur J Neurosci; 1995 Nov; 7(11):2322-33. PubMed ID: 8563981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurotransmitters of vestibular commissural inhibition in the cat.
    Furuya N; Koizumi T
    Acta Otolaryngol; 1998 Jan; 118(1):64-9. PubMed ID: 9504165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Central vestibular networks in the guinea-pig: functional characterization in the isolated whole brain in vitro.
    Babalian A; Vibert N; Assie G; Serafin M; Mühlethaler M; Vidal PP
    Neuroscience; 1997 Nov; 81(2):405-26. PubMed ID: 9300431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for N-methyl-D-aspartic acid receptor-mediated modulation of the commissural input to central vestibular neurons of the frog.
    Knöpfel T
    Brain Res; 1987 Nov; 426(2):212-24. PubMed ID: 2891409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of stimulation of auditory and somatosensory systems on the activity of vestibular nuclear neurons in the frog.
    Bricout-Berthout A; Caston J; Reber A
    Brain Behav Evol; 1984; 24(1):21-34. PubMed ID: 6608970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Vestibular compensation. Review of the literature and clinical applications].
    de Waele C; Vidal PP; Tran Ba Huy P; Freyss G
    Ann Otolaryngol Chir Cervicofac; 1990; 107(5):285-98. PubMed ID: 2221721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of the efferent system in the isolated frog labyrinth: effects on the afferent EPSPs and spike discharge recorded from single fibres of the posterior nerve.
    Rossi ML; Prigioni I; Valli P; Casella C
    Brain Res; 1980 Mar; 185(1):125-37. PubMed ID: 6965463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.