BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 31490486)

  • 1. Colour tuning and enhancement of gel-based electrochemiluminescence devices utilising Ru(ii) and Ir(iii) complexes.
    Soulsby LC; Doeven EH; Pham TT; Eyckens DJ; Henderson LC; Long BM; Guijt RM; Francis PS
    Chem Commun (Camb); 2019 Sep; 55(76):11474-11477. PubMed ID: 31490486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed annihilation electrogenerated chemiluminescence of iridium(iii) complexes.
    Soulsby LC; Hayne DJ; Doeven EH; Wilson DJD; Agugiaro J; Connell TU; Chen L; Hogan CF; Kerr E; Adcock JL; Donnelly PS; White JM; Francis PS
    Phys Chem Chem Phys; 2018 Jul; 20(28):18995-19006. PubMed ID: 29971279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Interplay between Transport and Reaction Kinetics of Luminophores on the Operation of AC-Driven Electrochemiluminescence Devices.
    Lee JI; Kang D; Kong SH; Gim H; Shin IS; Kim J; Kang MS
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41562-41569. PubMed ID: 30398048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Electrochemiluminescence from a Stoichiometric Ruthenium(II)-Iridium(III) Complex Soft Salt.
    Swanick KN; Sandroni M; Ding Z; Zysman-Colman E
    Chemistry; 2015 May; 21(20):7435-40. PubMed ID: 25735656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential-Resolved Multicolor Electrochemiluminescence for Multiplex Immunoassay in a Single Sample.
    Guo W; Ding H; Gu C; Liu Y; Jiang X; Su B; Shao Y
    J Am Chem Soc; 2018 Nov; 140(46):15904-15915. PubMed ID: 30380848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Exciplex-Based Light-Emission Pathway for Solution-State Electrochemiluminescent Devices.
    Moon CK; Butscher JF; Gather MC
    Adv Mater; 2023 Sep; 35(38):e2302544. PubMed ID: 37308129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced annihilation electrochemiluminescence by nanofluidic confinement.
    Al-Kutubi H; Voci S; Rassaei L; Sojic N; Mathwig K
    Chem Sci; 2018 Dec; 9(48):8946-8950. PubMed ID: 30647886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrazolo[4,3-h]quinoline Ligand-Based Iridium(III) Complexes for Electrochemiluminescence.
    Hsu CW; Longhi E; Sinn S; Hawes CS; Young DC; Kruger PE; Cola L
    Chem Asian J; 2017 Jul; 12(13):1649-1658. PubMed ID: 28503856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic.
    Moon HC; Lodge TP; Frisbie CD
    J Am Chem Soc; 2014 Mar; 136(9):3705-12. PubMed ID: 24517258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blue Electrogenerated Chemiluminescence from Water-Soluble Iridium Complexes Containing Sulfonated Phenylpyridine or Tetraethylene Glycol Derivatized Triazolylpyridine Ligands.
    Kerr E; Doeven EH; Barbante GJ; Connell TU; Donnelly PS; Wilson DJ; Ashton TD; Pfeffer FM; Francis PS
    Chemistry; 2015 Oct; 21(42):14987-95. PubMed ID: 26334026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient electrochemiluminescence labels comprising iridium(iii) complexes.
    Zhou Y; Xie K; Leng R; Kong L; Liu C; Zhang Q; Wang X
    Dalton Trans; 2017 Jan; 46(2):355-363. PubMed ID: 27996065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of ruthenium(II) tris(bipyridine) derivatives for electrochemiluminescence application.
    Zhou M; Robertson GP; Roovers J
    Inorg Chem; 2005 Nov; 44(23):8317-25. PubMed ID: 16270970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemically tuneable multi-colour electrochemiluminescence using a single emitter.
    Haghighatbin MA; Lo SC; Burn PL; Hogan CF
    Chem Sci; 2016 Dec; 7(12):6974-6980. PubMed ID: 28451132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quenching Electrochemiluminescence Immunosensor Based on Resonance Energy Transfer between Ruthenium (II) Complex Incorporated in the UiO-67 Metal-Organic Framework and Gold Nanoparticles for Insulin Detection.
    Zhao G; Wang Y; Li X; Dong X; Wang H; Du B; Cao W; Wei Q
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):22932-22938. PubMed ID: 29916688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the wavelength of electrochemiluminescence by anodic potential: a design using non-Kekulé-structured iridium-ruthenium luminophores.
    Schmittel M; Shu Q; Cinar ME
    Dalton Trans; 2012 May; 41(20):6064-8. PubMed ID: 22546811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distance-dependent quenching and enhancing of electrochemiluminescence from tris(2, 2'-bipyridine) ruthenium (II)/tripropylamine system by gold nanoparticles and its sensing applications.
    Gai QQ; Wang DM; Huang RF; Liang XX; Wu HL; Tao XY
    Biosens Bioelectron; 2018 Oct; 118():80-87. PubMed ID: 30056303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in electrochemiluminescence luminophores.
    Abdussalam A; Xu G
    Anal Bioanal Chem; 2022 Jan; 414(1):131-146. PubMed ID: 33893832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO
    Zhang W; Xiong H; Chen M; Zhang X; Wang S
    Biosens Bioelectron; 2017 Oct; 96():55-61. PubMed ID: 28460332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Blue to Green: Fine-Tuning of Photoluminescence and Electrochemiluminescence in Bifunctional Organic Dyes.
    Rizzo F; Polo F; Bottaro G; Fantacci S; Antonello S; Armelao L; Quici S; Maran F
    J Am Chem Soc; 2017 Feb; 139(5):2060-2069. PubMed ID: 28088858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quenching of the electrochemiluminescence of Ru(bpy)₃²⁺/TPA by malachite green and crystal violet.
    Huang B; Zhou X; Xue Z; Wu G; Du J; Luo D; Liu T; Ru J; Lu X
    Talanta; 2013 Mar; 106():174-80. PubMed ID: 23598113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.