These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31490521)

  • 21. Incorporation of the Fermi-Amaldi Term into Direct Energy Kohn-Sham Calculations.
    Dillon DJ; Tozer DJ
    J Chem Theory Comput; 2022 Feb; 18(2):703-709. PubMed ID: 34978791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ionization potentials and fundamental gaps in atomic systems from the Ensemble-DFT approach.
    Lavie S; Goshen Y; Kraisler E
    J Chem Phys; 2023 Apr; 158(15):. PubMed ID: 37094014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond.
    Verma P; Bartlett RJ
    J Chem Phys; 2012 Jan; 136(4):044105. PubMed ID: 22299859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation energy, correlated electron density, and exchange-correlation potential in some spherically confined atoms.
    Vyboishchikov SF
    J Comput Chem; 2016 Dec; 37(31):2677-2686. PubMed ID: 27730648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerically stable inversion approach to construct Kohn-Sham potentials for given electron densities within a Gaussian basis set framework.
    Erhard J; Trushin E; Görling A
    J Chem Phys; 2022 May; 156(20):204124. PubMed ID: 35649824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A self-interaction-free local hybrid functional: accurate binding energies vis-à-vis accurate ionization potentials from Kohn-Sham eigenvalues.
    Schmidt T; Kraisler E; Makmal A; Kronik L; Kümmel S
    J Chem Phys; 2014 May; 140(18):18A510. PubMed ID: 24832318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical evaluation of Fukui functions and real-space linear response function.
    Yang W; Cohen AJ; De Proft F; Geerlings P
    J Chem Phys; 2012 Apr; 136(14):144110. PubMed ID: 22502504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Apparent violation of the sum rule for exchange-correlation charges by generalized gradient approximations.
    Kohut SV; Staroverov VN
    J Chem Phys; 2013 Oct; 139(16):164117. PubMed ID: 24182014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving the exchange and correlation potential in density-functional approximations through constraints.
    Callow TJ; Pearce BJ; Pitts T; Lathiotakis NN; Hodgson MJP; Gidopoulos NI
    Faraday Discuss; 2020 Dec; 224(0):126-144. PubMed ID: 32940317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. What Is the Accuracy Limit of Adiabatic Linear-Response TDDFT Using Exact Exchange-Correlation Potentials and Approximate Kernels?
    Kaur J; Ospadov E; Staroverov VN
    J Chem Theory Comput; 2019 Sep; 15(9):4956-4964. PubMed ID: 31386366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kohn-Sham perturbation theory: simple solution to variational instability of second order correlation energy functional.
    Jiang H; Engel E
    J Chem Phys; 2006 Nov; 125(18):184108. PubMed ID: 17115739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Open-shell localized Hartree-Fock method based on the generalized adiabatic connection Kohn-Sham formalism for a self-consistent treatment of excited states.
    Vitale V; Della Sala F; Görling A
    J Chem Phys; 2005 Jun; 122(24):244102. PubMed ID: 16035741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracule densities in the strong-interaction limit of density functional theory.
    Gori-Giorgi P; Seidl M; Savin A
    Phys Chem Chem Phys; 2008 Jun; 10(23):3440-6. PubMed ID: 18535727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.
    Komorovsky S; Repisky M; Malkin E; Demissie TB; Ruud K
    J Chem Theory Comput; 2015 Aug; 11(8):3729-39. PubMed ID: 26574455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reducing density-driven error without exact exchange.
    Janesko BG
    Phys Chem Chem Phys; 2017 Feb; 19(6):4793-4801. PubMed ID: 28133677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Communication: Kohn-Sham theory for excited states of Coulomb systems.
    Ayers PW; Levy M; Nagy Á
    J Chem Phys; 2015 Nov; 143(19):191101. PubMed ID: 26590518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of Basis-Set Artifacts in Kohn-Sham Potentials Recovered from Electron Densities.
    Gaiduk AP; Ryabinkin IG; Staroverov VN
    J Chem Theory Comput; 2013 Sep; 9(9):3959-64. PubMed ID: 26592391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels.
    Kussmann J; Ochsenfeld C
    J Chem Phys; 2007 Nov; 127(20):204103. PubMed ID: 18052415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A second-order unconstrained optimization method for canonical-ensemble density-functional methods.
    Nygaard CR; Olsen J
    J Chem Phys; 2013 Mar; 138(9):094109. PubMed ID: 23485279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exchange methods in Kohn-Sham theory.
    Teale AM; Tozer DJ
    Phys Chem Chem Phys; 2005 Aug; 7(16):2991-8. PubMed ID: 16186901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.