These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31490596)

  • 1. Accelerated Nuclear Magnetic Resonance Spectroscopy with Deep Learning.
    Qu X; Huang Y; Lu H; Qiu T; Guo D; Agback T; Orekhov V; Chen Z
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10297-10300. PubMed ID: 31490596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast reconstruction of non-uniform sampling multidimensional NMR spectroscopy via a deep neural network.
    Luo J; Zeng Q; Wu K; Lin Y
    J Magn Reson; 2020 Aug; 317():106772. PubMed ID: 32589585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra.
    Hansen DF
    J Biomol NMR; 2019 Nov; 73(10-11):577-585. PubMed ID: 31292846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy.
    Chen D; Wang Z; Guo D; Orekhov V; Qu X
    Chemistry; 2020 Aug; 26(46):10391-10401. PubMed ID: 32251549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review and prospect: NMR spectroscopy denoising and reconstruction with low-rank Hankel matrices and tensors.
    Qiu T; Wang Z; Liu H; Guo D; Qu X
    Magn Reson Chem; 2021 Mar; 59(3):324-345. PubMed ID: 32797694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deconvolution of 1D NMR spectra: A deep learning-based approach.
    Schmid N; Bruderer S; Paruzzo F; Fischetti G; Toscano G; Graf D; Fey M; Henrici A; Ziebart V; Heitmann B; Grabner H; Wegner JD; Sigel RKO; Wilhelm D
    J Magn Reson; 2023 Feb; 347():107357. PubMed ID: 36563418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast NMR spectroscopy reconstruction with a sliding window based Hankel matrix.
    Wu J; Xu R; Huang Y; Zhan J; Tu Z; Qu X; Guo D
    J Magn Reson; 2022 Sep; 342():107283. PubMed ID: 35970047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning for computational chemistry.
    Goh GB; Hodas NO; Vishnu A
    J Comput Chem; 2017 Jun; 38(16):1291-1307. PubMed ID: 28272810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the 1H-NMR spectra of complex oligosaccharides with artificial neural networks.
    Meyer B; Hansen T; Nute D; Albersheim P; Darvill A; York W; Sellers J
    Science; 1991 Feb; 251(4993):542-4. PubMed ID: 1990429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Resonance Fingerprinting Reconstruction Using Recurrent Neural Networks.
    Hoppe E; Thamm F; Körzdörfer G; Syben C; Schirrmacher F; Nittka M; Pfeuffer J; Meyer H; Maier A
    Stud Health Technol Inform; 2019 Sep; 267():126-133. PubMed ID: 31483264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic classification of signal regions in
    Fischetti G; Schmid N; Bruderer S; Caldarelli G; Scarso A; Henrici A; Wilhelm D
    Front Artif Intell; 2022; 5():1116416. PubMed ID: 36714208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation.
    Cuny J; Xie Y; Pickard CJ; Hassanali AA
    J Chem Theory Comput; 2016 Feb; 12(2):765-73. PubMed ID: 26730889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural networks for quantitative online NMR spectroscopy.
    Kern S; Liehr S; Wander L; Bornemann-Pfeiffer M; Müller S; Maiwald M; Kowarik S
    Anal Bioanal Chem; 2020 Jul; 412(18):4447-4459. PubMed ID: 32388578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation theory and Neural Networks revisited: REKF and RSVSF as optimization techniques for Deep-Learning.
    Ismail M; Attari M; Habibi S; Ziada S
    Neural Netw; 2018 Dec; 108():509-526. PubMed ID: 30336326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series.
    Hoppe E; Körzdörfer G; Würfl T; Wetzl J; Lugauer F; Pfeuffer J; Maier A
    Stud Health Technol Inform; 2017; 243():202-206. PubMed ID: 28883201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Acquisition of High-Quality Nuclear Magnetic Resonance Pure Shift Spectroscopy via a Deep Neural Network.
    Zheng X; Yang Z; Yang C; Shi X; Luo Y; Luo J; Zeng Q; Lin Y; Chen Z
    J Phys Chem Lett; 2022 Mar; 13(9):2101-2106. PubMed ID: 35225613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.