These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31490609)

  • 1. Phase Transition Behaviors and Nanoscale Film Morphologies of Poly(δ-valerolactone) Axles Bearing Movable and Fixed Rotaxane Wheels.
    Ree BJ; Aoki D; Kim J; Satoh T; Takata T; Ree M
    Macromol Rapid Commun; 2019 Nov; 40(21):e1900334. PubMed ID: 31490609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Component Mobility on the Properties of Macromolecular [2]Rotaxanes.
    Chen Z; Aoki D; Uchida S; Marubayashi H; Nojima S; Takata T
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2778-81. PubMed ID: 26806916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [2]Rotaxanes containing pyridinium-phosphonium axles and 24-crown-8 ether wheels.
    Georges N; Loeb SJ; Tiburcio J; Wisner JA
    Org Biomol Chem; 2004 Oct; 2(19):2751-6. PubMed ID: 15455146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular [2]Rotaxanes: Effective Synthesis and Characterization.
    Aoki D; Uchida S; Nakazono K; Koyama Y; Takata T
    ACS Macro Lett; 2013 Jun; 2(6):461-465. PubMed ID: 35581797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination polymers containing rotaxane linkers.
    Vukotic VN; Loeb SJ
    Chem Soc Rev; 2012 Sep; 41(18):5896-906. PubMed ID: 22717946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Level Structure of Biodegradable Poly(Delta-Valerolactone) Obtained in the Presence of Boric Acid.
    Duale K; Zięba M; Chaber P; Di Fouque DJ; Memboeuf A; Peptu C; Radecka I; Kowalczuk M; Adamus G
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30110952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An artificial molecular chaperone: poly-pseudo-rotaxane with an extensible axle.
    Osaki M; Takashima Y; Yamaguchi H; Harada A
    J Am Chem Soc; 2007 Nov; 129(46):14452-7. PubMed ID: 17973382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically Linked Block/Graft Copolymers: Effective Synthesis via Functional Macromolecular [2]Rotaxanes.
    Aoki D; Uchida S; Takata T
    ACS Macro Lett; 2014 Apr; 3(4):324-328. PubMed ID: 35590740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of the Axle End Structure and Number of Through-Space Bonds on the Properties of Rotaxane Crosslinked Polymers.
    Akae Y; Sawada J; Nakajima K; Takata T
    Angew Chem Int Ed Engl; 2023 Aug; 62(33):e202303341. PubMed ID: 37158760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative active transport in [2]rotaxane using a one-shot acylation reaction toward the linear molecular motor.
    Makita Y; Kihara N; Takata T
    J Org Chem; 2008 Dec; 73(23):9245-50. PubMed ID: 18954114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-harvesting in multichromophoric rotaxanes.
    Gallina ME; Baytekin B; Schalley C; Ceroni P
    Chemistry; 2012 Jan; 18(5):1528-35. PubMed ID: 22213028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Star/linear polymer topology transformation facilitated by mechanical linking of polymer chains.
    Aoki D; Uchida S; Takata T
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6770-4. PubMed ID: 25892579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of incorporating Fréchet dendrons into rotaxanes and molecular shuttles containing the 1,2-bis(pyridinium)ethane⊂[24]crown-8 templating motif.
    Tramontozzi DA; Suhan ND; Eichhorn SH; Loeb SJ
    Chemistry; 2010 Apr; 16(15):4466-76. PubMed ID: 20352637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of a supramolecular network with pseudo-rotaxane cross-linking nodes and its transformation into a mechanically locked structure by rotaxane formation.
    Soto MA; Tiburcio J
    Chem Commun (Camb); 2016 Dec; 52(98):14149-14152. PubMed ID: 27869280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New biodegradable amphiphilic block copolymers of epsilon-caprolactone and delta-valerolactone catalyzed by novel aluminum metal complexes. II. Micellization and solution to gel transition.
    Yang J; Jia L; Hao Q; Li Y; Li Q; Fang Q; Cao A
    Macromol Biosci; 2005 Sep; 5(9):896-903. PubMed ID: 16134088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs.
    Lee H; Zeng F; Dunne M; Allen C
    Biomacromolecules; 2005; 6(6):3119-28. PubMed ID: 16283736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rational design for the directed helicity change of polyacetylene using dynamic rotaxane mobility by means of through-space chirality transfer.
    Ishiwari F; Fukasawa K; Sato T; Nakazono K; Koyama Y; Takata T
    Chemistry; 2011 Oct; 17(43):12067-75. PubMed ID: 21922578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An oriented handcuff rotaxane.
    Ciao R; Talotta C; Gaeta C; Margarucci L; Casapullo A; Neri P
    Org Lett; 2013 Nov; 15(22):5694-7. PubMed ID: 24180584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to biodegradable block copolymers of epsilon-caprolactone and delta-valerolactone catalyzed by new aluminum metal complexes.
    Yang J; Jia L; Yin L; Yu J; Shi Z; Fang Q; Cao A
    Macromol Biosci; 2004 Dec; 4(12):1092-104. PubMed ID: 15586386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [2]Pseudorotaxanes, [2]rotaxanes and metal-organic rotaxane frameworks containing tetra-substituted dibenzo[24]crown-8 wheels.
    Mercer DJ; Yacoub J; Zhu K; Loeb SK; Loeb SJ
    Org Biomol Chem; 2012 Aug; 10(30):6094-104. PubMed ID: 22581393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.