These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31490647)

  • 1. Computational Image Analysis of Guided Acoustic Waves Enables Rheological Assessment of Sub-nanoliter Volumes.
    Khalid MA; Ray A; Cohen S; Tassieri M; Demčenko A; Tseng D; Reboud J; Ozcan A; Cooper JM
    ACS Nano; 2019 Oct; 13(10):11062-11069. PubMed ID: 31490647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic waves in cylindrical gap, filled by polymeric liquid.
    Levitsky S; Bergman R; Haddad J
    Ultrasonics; 2002 May; 40(1-8):703-6. PubMed ID: 12160029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing the characteristic acoustic impedance of a fluid utilizing acoustic pressure waves.
    Antlinger H; Clara S; Beigelbeck R; Cerimovic S; Keplinger F; Jakoby B
    Sens Actuators A Phys; 2012 Oct; 186(100):94-99. PubMed ID: 23565036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic detection of nanoparticles using acoustically actuated nanolenses.
    Ray A; Khalid MA; Demčenko A; Daloglu M; Tseng D; Reboud J; Cooper JM; Ozcan A
    Nat Commun; 2020 Jan; 11(1):171. PubMed ID: 31949134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-frequency sound transmission through a gas-liquid interface.
    Godin OA
    J Acoust Soc Am; 2008 Apr; 123(4):1866-79. PubMed ID: 18396996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.
    Shilton RJ; Travagliati M; Beltram F; Cecchini M
    Adv Mater; 2014 Aug; 26(29):4941-6. PubMed ID: 24677370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic Biosensors and Microfluidic Devices in the Decennium: Principles and Applications.
    Nair MP; Teo AJT; Li KHH
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic Waves in Piezoelectric Layered Structure for Selective Detection of Liquid Viscosity.
    Smirnov A; Anisimkin V; Shamsutdinova E; Signore MA; Francioso L; Zykov K; Baklaushev V; Kuznetsova I
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever.
    Payam AF; Trewby W; Voïtchovsky K
    Analyst; 2017 May; 142(9):1492-1498. PubMed ID: 28352874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Onset of Visible Capillary Waves from High-Frequency Acoustic Excitation.
    Zhang S; Orosco J; Friend J
    Langmuir; 2023 Mar; 39(10):3699-3709. PubMed ID: 36857201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultrasonic air pump using an acoustic traveling wave along a small air gap.
    Koyama D; Wada Y; Nakamura K; Nishikawa M; Nakagawa T; Kihara H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):253-61. PubMed ID: 20040451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing an Optically Induced Sub-micrometer Gigahertz Acoustic Wave in a Silicon Thin Plate.
    Nakamura A; Shimojima T; Ishizaka K
    Nano Lett; 2023 Apr; 23(7):2490-2495. PubMed ID: 36944354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of Guided Acoustic Waves in a Human Skull.
    Estrada H; Gottschalk S; Reiss M; Neuschmelting V; Goldbrunner R; Razansky D
    Ultrasound Med Biol; 2018 Nov; 44(11):2388-2392. PubMed ID: 30093337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the rheological properties of supported thin polystyrene films by investigating the growth dynamics of wetting ridges.
    Zuo B; Tian H; Liang Y; Xu H; Zhang W; Zhang L; Wang X
    Soft Matter; 2016 Jul; 12(28):6120-31. PubMed ID: 27355155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Array based real-time measurement of fluid viscosities and mass-densities to monitor biological filament formation.
    Oliva P; Bircher BA; Schoenenberger CA; Braun T
    Lab Chip; 2019 Mar; 19(7):1305-1314. PubMed ID: 30855603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-induced elastic wave classification: thermoelastic versus ablative regimes for all-optical elastography applications.
    Das S; Schill A; Liu CH; Aglyamov S; Larin KV
    J Biomed Opt; 2020 Mar; 25(3):1-13. PubMed ID: 32189479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type.
    Kolman M; Smith C; Chakrabarty D; Amin S
    Int J Cosmet Sci; 2021 Dec; 43(6):748-763. PubMed ID: 34741768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of viscosity of highly viscous non-Newtonian fluids by means of ultrasonic guided waves.
    Kazys R; Mazeika L; Sliteris R; Raisutis R
    Ultrasonics; 2014 Apr; 54(4):1104-12. PubMed ID: 24491274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.