These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 31491112)

  • 1. Hydrogen-Induced High-Temperature Superconductivity in Two-Dimensional Materials: The Example of Hydrogenated Monolayer MgB_{2}.
    Bekaert J; Petrov M; Aperis A; Oppeneer PM; Milošević MV
    Phys Rev Lett; 2019 Aug; 123(7):077001. PubMed ID: 31491112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon-mediated superconductivity in two-dimensional hydrogenated phosphorus carbide: HPC
    Li YP; Yang L; Liu HD; Jiao N; Ni MY; Hao N; Lu HY; Zhang P
    Phys Chem Chem Phys; 2022 Apr; 24(16):9256-9262. PubMed ID: 35388845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing superconductivity in MXenes through hydrogenation.
    Bekaert J; Sevik C; Milošević MV
    Nanoscale; 2022 Jul; 14(27):9918-9924. PubMed ID: 35781316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Van Hove singularity driven enhancement of superconductivity in two-dimensional tungsten monofluoride (WF).
    Jamwal P; Ahuja R; Kumar R
    J Phys Condens Matter; 2024 Mar; 36(24):. PubMed ID: 38411011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superconductivity in Li-intercalated bilayer arsenene and hole-doped monolayer arsenene: a first-principles prediction.
    Chen J; Ge Y; Zhou W; Peng M; Pan J; Ouyang F
    J Phys Condens Matter; 2018 Jun; 30(24):245701. PubMed ID: 29714171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realization of hydrogenation-induced superconductivity in two-dimensional Ti
    Xue Y; Cheng Z; Yao S; Wang B; Jiang J; Peng L; Shi T; Chen J; Liu X; Lin J
    Phys Chem Chem Phys; 2024 Sep; 26(35):23240-23249. PubMed ID: 39192767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-bonded perovskite lead hydride with phonon-mediated superconductivity exceeding 46 K under ambient pressure.
    He Y; Du J; Liu SM; Tian C; Zhang M; Zhu YH; Zhong HX; Wang X; Shi JJ
    J Phys Condens Matter; 2024 Feb; 36(20):. PubMed ID: 38335547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-induced stability and superconductivity in LuH
    Du J; Sun W; Li X; Peng F
    Phys Chem Chem Phys; 2023 May; 25(19):13320-13324. PubMed ID: 37133917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence of superconductivity and charge density wave instability in A15-Nb
    Wu LN; Yang ST; Shen JK; Zhang JS; Liu FH
    Phys Chem Chem Phys; 2023 Dec; 25(47):32452-32459. PubMed ID: 37991918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-induced multigap superconductivity in electrene Mo
    Pereira ZS; Faccin GM; da Silva EZ
    Nanoscale; 2022 Jun; 14(24):8594-8600. PubMed ID: 35660836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can Two-Dimensional Boron Superconduct?
    Penev ES; Kutana A; Yakobson BI
    Nano Lett; 2016 Apr; 16(4):2522-6. PubMed ID: 27003635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-induced phase stability and phonon mediated-superconductivity in two-dimensional van der Waals Ti
    Tsuppayakorn-Aek P; Bovornratanaraks T; Ahuja R; Luo W; Kotmool K
    Phys Chem Chem Phys; 2023 Jan; 25(3):2227-2233. PubMed ID: 36594791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of
    Liu R; Lu J; Chen H; Zhao X; Hu G; Yuan X; Ren J
    J Phys Condens Matter; 2023 Feb; 35(14):. PubMed ID: 36689775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure and electron-phonon coupling in TiH2.
    Shanavas KV; Lindsay L; Parker DS
    Sci Rep; 2016 Jun; 6():28102. PubMed ID: 27302645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical quest for high temperature superconductivity on the example of low-dimensional carbon structures.
    Wong CH; Lortz R; Buntov EA; Kasimova RE; Zatsepin AF
    Sci Rep; 2017 Nov; 7(1):15815. PubMed ID: 29150653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-phonon coupling in La
    Singh S; Pinsook U
    J Phys Condens Matter; 2023 Apr; 35(24):. PubMed ID: 36927624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, electronic, vibrational, and superconducting properties of hydrogenated chlorine.
    Durajski AP; Szczȩśniak R
    J Chem Phys; 2018 Aug; 149(7):074101. PubMed ID: 30134688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-phonon interaction and superconductivity in the high-pressure cI16 phase of lithium from first principles.
    Yue SY; Cheng L; Liao B; Hu M
    Phys Chem Chem Phys; 2018 Oct; 20(42):27125-27130. PubMed ID: 30334033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of superconductivity in Zr
    Jamwal P; Ahuja R; Kumar R
    J Phys Condens Matter; 2024 Jun; 36(38):. PubMed ID: 38848722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of a universal donor-dependent vibrational mode in graphene.
    Fedorov AV; Verbitskiy NI; Haberer D; Struzzi C; Petaccia L; Usachov D; Vilkov OY; Vyalikh DV; Fink J; Knupfer M; Büchner B; Grüneis A
    Nat Commun; 2014; 5():3257. PubMed ID: 24500121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.