These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine. Chatterjee S; Koner A; Chatterjee S; Kumar C Phys Rev E; 2021 Jun; 103(6-1):062109. PubMed ID: 34271723 [TBL] [Abstract][Full Text] [Related]
3. Stochastic heat engine using an active particle. Kumari A; Pal PS; Saha A; Lahiri S Phys Rev E; 2020 Mar; 101(3-1):032109. PubMed ID: 32289893 [TBL] [Abstract][Full Text] [Related]
4. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines. Mohanta S; Saha M; Venkatesh BP; Agarwalla BK Phys Rev E; 2023 Jul; 108(1-1):014118. PubMed ID: 37583162 [TBL] [Abstract][Full Text] [Related]
5. Two simple models of classical heat pumps. Marathe R; Jayannavar AM; Dhar A Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):030103. PubMed ID: 17500657 [TBL] [Abstract][Full Text] [Related]
7. Characteristics of the limit cycle of a reciprocating quantum heat engine. Feldmann T; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046110. PubMed ID: 15600463 [TBL] [Abstract][Full Text] [Related]
8. Bounds on fluctuations for finite-time quantum Otto cycle. Saryal S; Agarwalla BK Phys Rev E; 2021 Jun; 103(6):L060103. PubMed ID: 34271746 [TBL] [Abstract][Full Text] [Related]
9. Single-particle stochastic heat engine. Rana S; Pal PS; Saha A; Jayannavar AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477 [TBL] [Abstract][Full Text] [Related]
10. Two coupled, driven Ising spin systems working as an engine. Basu D; Nandi J; Jayannavar AM; Marathe R Phys Rev E; 2017 May; 95(5-1):052123. PubMed ID: 28618631 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic performance of a periodically driven harmonic oscillator correlated with the baths. Chen T; Poletti D Phys Rev E; 2021 Nov; 104(5-1):054118. PubMed ID: 34942712 [TBL] [Abstract][Full Text] [Related]
12. Energetics of a simple microscopic heat engine. Asfaw M; Bekele M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690 [TBL] [Abstract][Full Text] [Related]
13. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin. Altintas F; Müstecaplıoğlu ÖE Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022142. PubMed ID: 26382378 [TBL] [Abstract][Full Text] [Related]
14. Exact path-integral evaluation of the heat distribution function of a trapped brownian oscillator. Chatterjee D; Cherayil BJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051104. PubMed ID: 21230434 [TBL] [Abstract][Full Text] [Related]
15. Extracting work from random collisions: A model of a quantum heat engine. Shaghaghi V; Palma GM; Benenti G Phys Rev E; 2022 Mar; 105(3-1):034101. PubMed ID: 35428074 [TBL] [Abstract][Full Text] [Related]
16. Quantum Otto-type heat engine with fixed frequency. Matos RQ; de Assis RJ; de Almeida NG Phys Rev E; 2023 Nov; 108(5-1):054131. PubMed ID: 38115429 [TBL] [Abstract][Full Text] [Related]
17. Driven Brownian particle as a paradigm for a nonequilibrium heat bath: Effective temperature and cyclic work extraction. Wulfert R; Oechsle M; Speck T; Seifert U Phys Rev E; 2017 May; 95(5-1):050103. PubMed ID: 28618536 [TBL] [Abstract][Full Text] [Related]
18. Spin Quantum Heat Engine Quantified by Quantum Steering. Ji W; Chai Z; Wang M; Guo Y; Rong X; Shi F; Ren C; Wang Y; Du J Phys Rev Lett; 2022 Mar; 128(9):090602. PubMed ID: 35302812 [TBL] [Abstract][Full Text] [Related]