These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31491211)

  • 1. Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel.
    von Lindenfels D; Gräb O; Schmiegelow CT; Kaushal V; Schulz J; Mitchison MT; Goold J; Schmidt-Kaler F; Poschinger UG
    Phys Rev Lett; 2019 Aug; 123(8):080602. PubMed ID: 31491211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine.
    Chatterjee S; Koner A; Chatterjee S; Kumar C
    Phys Rev E; 2021 Jun; 103(6-1):062109. PubMed ID: 34271723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic heat engine using an active particle.
    Kumari A; Pal PS; Saha A; Lahiri S
    Phys Rev E; 2020 Mar; 101(3-1):032109. PubMed ID: 32289893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines.
    Mohanta S; Saha M; Venkatesh BP; Agarwalla BK
    Phys Rev E; 2023 Jul; 108(1-1):014118. PubMed ID: 37583162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two simple models of classical heat pumps.
    Marathe R; Jayannavar AM; Dhar A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):030103. PubMed ID: 17500657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale heat engine beyond the Carnot limit.
    Roßnagel J; Abah O; Schmidt-Kaler F; Singer K; Lutz E
    Phys Rev Lett; 2014 Jan; 112(3):030602. PubMed ID: 24484127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of the limit cycle of a reciprocating quantum heat engine.
    Feldmann T; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046110. PubMed ID: 15600463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bounds on fluctuations for finite-time quantum Otto cycle.
    Saryal S; Agarwalla BK
    Phys Rev E; 2021 Jun; 103(6):L060103. PubMed ID: 34271746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two coupled, driven Ising spin systems working as an engine.
    Basu D; Nandi J; Jayannavar AM; Marathe R
    Phys Rev E; 2017 May; 95(5-1):052123. PubMed ID: 28618631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic performance of a periodically driven harmonic oscillator correlated with the baths.
    Chen T; Poletti D
    Phys Rev E; 2021 Nov; 104(5-1):054118. PubMed ID: 34942712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of a simple microscopic heat engine.
    Asfaw M; Bekele M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.
    Altintas F; Müstecaplıoğlu ÖE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022142. PubMed ID: 26382378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact path-integral evaluation of the heat distribution function of a trapped brownian oscillator.
    Chatterjee D; Cherayil BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051104. PubMed ID: 21230434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting work from random collisions: A model of a quantum heat engine.
    Shaghaghi V; Palma GM; Benenti G
    Phys Rev E; 2022 Mar; 105(3-1):034101. PubMed ID: 35428074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Otto-type heat engine with fixed frequency.
    Matos RQ; de Assis RJ; de Almeida NG
    Phys Rev E; 2023 Nov; 108(5-1):054131. PubMed ID: 38115429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Driven Brownian particle as a paradigm for a nonequilibrium heat bath: Effective temperature and cyclic work extraction.
    Wulfert R; Oechsle M; Speck T; Seifert U
    Phys Rev E; 2017 May; 95(5-1):050103. PubMed ID: 28618536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin Quantum Heat Engine Quantified by Quantum Steering.
    Ji W; Chai Z; Wang M; Guo Y; Rong X; Shi F; Ren C; Wang Y; Du J
    Phys Rev Lett; 2022 Mar; 128(9):090602. PubMed ID: 35302812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single-atom heat engine.
    Roßnagel J; Dawkins ST; Tolazzi KN; Abah O; Lutz E; Schmidt-Kaler F; Singer K
    Science; 2016 Apr; 352(6283):325-9. PubMed ID: 27081067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir.
    Singh V; Müstecaplıoğlu ÖE
    Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.