These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31491284)

  • 1. Correlated Rigidity Percolation and Colloidal Gels.
    Zhang S; Zhang L; Bouzid M; Rocklin DZ; Del Gado E; Mao X
    Phys Rev Lett; 2019 Aug; 123(5):058001. PubMed ID: 31491284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated rigidity percolation in fractal lattices.
    Machlus S; Zhang S; Mao X
    Phys Rev E; 2021 Jan; 103(1-1):012104. PubMed ID: 33601532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network physics of attractive colloidal gels: Resilience, rigidity, and phase diagram.
    Nabizadeh M; Nasirian F; Li X; Saraswat Y; Waheibi R; Hsiao LC; Bi D; Ravandi B; Jamali S
    Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2316394121. PubMed ID: 38194451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Jamming transition and new percolation universality classes in particulate systems with attraction.
    Lois G; Blawzdziewicz J; O'Hern CS
    Phys Rev Lett; 2008 Jan; 100(2):028001. PubMed ID: 18232929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelation of particles with short-range attraction.
    Lu PJ; Zaccarelli E; Ciulla F; Schofield AB; Sciortino F; Weitz DA
    Nature; 2008 May; 453(7194):499-503. PubMed ID: 18497820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Location of the gel-like boundary in patchy colloidal dispersions: Rigidity percolation, structure, and particle dynamics.
    Gallegos JAS; Perdomo-Pérez R; Valadez-Pérez NE; Castañeda-Priego R
    Phys Rev E; 2021 Dec; 104(6-1):064606. PubMed ID: 35030878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: aging and gelation.
    Tanaka H; Jabbari-Farouji S; Meunier J; Bonn D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021402. PubMed ID: 15783324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical arrest in adhesive hard-sphere dispersions driven by rigidity percolation.
    Valadez-Pérez NE; Liu Y; Eberle AP; Wagner NJ; Castañeda-Priego R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):060302. PubMed ID: 24483369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelation transitions of colloidal systems with bridging attractions.
    Yuan G; Luo J; Han CC; Liu Y
    Phys Rev E; 2016 Oct; 94(4-1):040601. PubMed ID: 27841525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic interactions enhance gelation in dispersions of colloids with short-ranged attraction and long-ranged repulsion.
    Varga Z; Swan J
    Soft Matter; 2016 Sep; 12(36):7670-81. PubMed ID: 27550538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key role of hydrodynamic interactions in colloidal gelation.
    Furukawa A; Tanaka H
    Phys Rev Lett; 2010 Jun; 104(24):245702. PubMed ID: 20867312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the range of attractive interactions on crystallization, metastable phase transition, and percolation in colloidal dispersions.
    Fu D; Li Y; Wu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011403. PubMed ID: 12935139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitrification and gelation in sticky spheres.
    Royall CP; Williams SR; Tanaka H
    J Chem Phys; 2018 Jan; 148(4):044501. PubMed ID: 29390812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction.
    Rouwhorst J; Ness C; Stoyanov S; Zaccone A; Schall P
    Nat Commun; 2020 Jul; 11(1):3558. PubMed ID: 32678089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative simulation study of colloidal gels and glasses.
    Puertas AM; Fuchs M; Cates ME
    Phys Rev Lett; 2002 Mar; 88(9):098301. PubMed ID: 11864061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels.
    Helgeson ME; Gao Y; Moran SE; Lee J; Godfrin M; Tripathi A; Bose A; Doyle PS
    Soft Matter; 2014 May; 10(17):3122-33. PubMed ID: 24695862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction.
    Harden JL; Guo H; Bertrand M; Shendruk TN; Ramakrishnan S; Leheny RL
    J Chem Phys; 2018 Jan; 148(4):044902. PubMed ID: 29390849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence and percolation of rigid domains during the colloidal glass transition.
    Yang X; Tong H; Wang WH; Chen K
    Phys Rev E; 2019 Jun; 99(6-1):062610. PubMed ID: 31330594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimal conditions for solidification and thermal processing of colloidal gels.
    Fenton SM; Padmanabhan P; Ryu BK; Nguyen TTD; Zia RN; Helgeson ME
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2215922120. PubMed ID: 37307451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.