These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31491452)

  • 1. Streamlined Low-Input Transcriptomics through EASY-RNAseq.
    Zhou Y; Xu H; Wu H; Yu H; Zhou P; Qiu X; Zheng Z; Chen Q; Xu F; Li G; Zhou J; Cheng G; He W; Zou L; Wan Y
    J Mol Biol; 2019 Dec; 431(24):5075-5085. PubMed ID: 31491452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Throughput Sequencing-Based Approaches for Gene Expression Analysis.
    Reddy RRS; Ramanujam MV
    Methods Mol Biol; 2018; 1783():299-323. PubMed ID: 29767369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BISR-RNAseq: an efficient and scalable RNAseq analysis workflow with interactive report generation.
    Gadepalli VS; Ozer HG; Yilmaz AS; Pietrzak M; Webb A
    BMC Bioinformatics; 2019 Dec; 20(Suppl 24):670. PubMed ID: 31861980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bioinformatics Pipeline for the Identification of CHO Cell Differential Gene Expression from RNA-Seq Data.
    Monger C; Motheramgari K; McSharry J; Barron N; Clarke C
    Methods Mol Biol; 2017; 1603():169-186. PubMed ID: 28493130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The START App: a web-based RNAseq analysis and visualization resource.
    Nelson JW; Sklenar J; Barnes AP; Minnier J
    Bioinformatics; 2017 Feb; 33(3):447-449. PubMed ID: 28171615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-RHEX-RNAseq - a tagmentation-based, rRNA blocked, random hexamer primed RNAseq method for generating stranded RNAseq libraries directly from very low numbers of lysed cells.
    Gustafsson C; Hauenstein J; Frengen N; Krstic A; Luc S; MÃ¥nsson R
    BMC Genomics; 2023 Apr; 24(1):205. PubMed ID: 37069502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal transcriptome profiling by directional next-generation sequencing using 100 ng of total RNA.
    Brooks MJ; Rajasimha HK; Swaroop A
    Methods Mol Biol; 2012; 884():319-34. PubMed ID: 22688717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Cell RNA Sequencing of Glioblastoma Cells.
    Sen R; Dolgalev I; Bayin NS; Heguy A; Tsirigos A; Placantonakis DG
    Methods Mol Biol; 2018; 1741():151-170. PubMed ID: 29392698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conduct and Quality Control of Differential Gene Expression Analysis Using High-Throughput Transcriptome Sequencing (RNASeq).
    Grassmann F
    Methods Mol Biol; 2019; 1834():29-43. PubMed ID: 30324434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Borrelia burgdorferi Transcriptome Analysis by RNA-Sequencing.
    Lybecker M; Henderson KC
    Methods Mol Biol; 2018; 1690():127-136. PubMed ID: 29032542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A platform independent RNA-Seq protocol for the detection of transcriptome complexity.
    Calabrese C; Mangiulli M; Manzari C; Paluscio AM; Caratozzolo MF; Marzano F; Kurelac I; D'Erchia AM; D'Elia D; Licciulli F; Liuni S; Picardi E; Attimonelli M; Gasparre G; Porcelli AM; Pesole G; Sbisà E; Tullo A
    BMC Genomics; 2013 Dec; 14(1):855. PubMed ID: 24308330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Transcriptomics: Investigating Cardiovascular Disease at Unprecedented Resolution.
    Wirka RC; Pjanic M; Quertermous T
    Circ Res; 2018 Apr; 122(9):1200-1220. PubMed ID: 29700068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of RNA sequencing to evaluate rheumatic disease patients.
    Giannopoulou EG; Elemento O; Ivashkiv LB
    Arthritis Res Ther; 2015 Jul; 17(1):167. PubMed ID: 26126608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Guide for Designing and Analyzing RNA-Seq Data.
    Chatterjee A; Ahn A; Rodger EJ; Stockwell PA; Eccles MR
    Methods Mol Biol; 2018; 1783():35-80. PubMed ID: 29767357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic limitations to RNA sequencing expression profiling.
    Hirsch CD; Springer NM; Hirsch CN
    Plant J; 2015 Nov; 84(3):491-503. PubMed ID: 26331235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SureSelect
    Jones JC; Siebold AP; Livi CB; Lucas AB
    Methods Mol Biol; 2018; 1783():81-104. PubMed ID: 29767358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Cell mRNA-Seq Using the Fluidigm C1 System and Integrated Fluidics Circuits.
    Gong H; Do D; Ramakrishnan R
    Methods Mol Biol; 2018; 1783():193-207. PubMed ID: 29767364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA Tomography for Spatially Resolved Transcriptomics (Tomo-Seq).
    Holler K; Junker JP
    Methods Mol Biol; 2019; 1920():129-141. PubMed ID: 30737690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Profiling of RNA Tumors Using High-Throughput RNA Sequencing: From Raw Data to Systems Level Analyses.
    da Silveira WA; Hazard ES; Chung D; Hardiman G
    Methods Mol Biol; 2019; 1908():185-204. PubMed ID: 30649729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.