BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31491511)

  • 1. Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents.
    Rios NS; Morais EG; Dos Santos Galvão W; Andrade Neto DM; Dos Santos JCS; Bohn F; Correa MA; Fechine PBA; Fernandez-Lafuente R; Gonçalves LRB
    Int J Biol Macromol; 2019 Dec; 141():313-324. PubMed ID: 31491511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support.
    Rios NS; Neto DMA; Dos Santos JCS; Fechine PBA; Fernández-Lafuente R; Gonçalves LRB
    Int J Biol Macromol; 2019 Aug; 134():936-945. PubMed ID: 31121223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability.
    Rios NS; Mendez-Sanchez C; Arana-Peña S; Rueda N; Ortiz C; Gonçalves LRB; Fernandez-Lafuente R
    Biochim Biophys Acta Proteins Proteom; 2019 Sep; 1867(9):741-747. PubMed ID: 31202001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems.
    Lima LN; Oliveira GC; Rojas MJ; Castro HF; Da Rós PC; Mendes AA; Giordano RL; Tardioli PW
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):523-35. PubMed ID: 25626526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of Lipase from Pseudomonas fluorescens on Porous Polyurea and Its Application in Kinetic Resolution of Racemic 1-Phenylethanol.
    Han H; Zhou Y; Li S; Wang Y; Kong XZ
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25714-25724. PubMed ID: 27618157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Enzymatic Performance of Immobilized
    Wang Q; Xiong J; Xu H; Sun W; Pan X; Cui S; Lv S; Zhang Y
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile immobilization of Pseudomonas fluorescens lipase on polyaniline nanofibers (PANFs-PFL): A route to develop robust nanobiocatalyst.
    Dwivedee BP; Soni S; Laha JK; Banerjee UC
    Int J Biol Macromol; 2018 Nov; 119():8-14. PubMed ID: 30009899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Enzyme Loading and Immobilization Conditions on the Catalytic Features of Lipase From
    Arana-Peña S; Rios NS; Carballares D; Mendez-Sanchez C; Lokha Y; Gonçalves LRB; Fernandez-Lafuente R
    Front Bioeng Biotechnol; 2020; 8():36. PubMed ID: 32181245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of Different Immobilized Lipases in the Syntheses of Short- and Long-Chain Carboxylic Acid Esters by Esterification Reactions in Organic Media.
    de Lima LN; Mendes AA; Fernandez-Lafuente R; Tardioli PW; Giordano RLC
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29584655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilized Lipases on Functionalized Silica Particles as Potential Biocatalysts for the Synthesis of  Fructose Oleate in an Organic Solvent/Water System.
    Vescovi V; Giordano RL; Mendes AA; Tardioli PW
    Molecules; 2017 Jan; 22(2):. PubMed ID: 28146090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts with very high volumetric activity using octyl-agarose beads: Avoiding enzyme release during multilayer production.
    Arana-Peña S; Rios NS; Mendez-Sanchez C; Lokha Y; Gonçalves LRB; Fernández-Lafuente R
    Enzyme Microb Technol; 2020 Jun; 137():109535. PubMed ID: 32423679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring a robust and recyclable nanobiocatalyst by immobilization of Pseudomonas fluorescens lipase on carbon nanofiber and its application in synthesis of enantiopure carboetomidate analogue.
    Dwivedee BP; Soni S; Bhimpuria R; Laha JK; Banerjee UC
    Int J Biol Macromol; 2019 Jul; 133():1299-1310. PubMed ID: 30940586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEG-modified lipase immobilized onto NH
    Yuan X; Ou J; Zhang P; Xu W; Jiang B; Tang K
    Int J Biol Macromol; 2020 Dec; 165(Pt B):1793-1802. PubMed ID: 33086109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal deactivation kinetics of Pseudomonas fluorescens lipase entrapped in AOT/isooctane reverse micelles.
    Park KM; Kwon CW; Choi SJ; Son YH; Lim S; Yoo Y; Chang PS
    J Agric Food Chem; 2013 Oct; 61(39):9421-7. PubMed ID: 23984828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New applications of glyoxyl-octyl agarose in lipases co-immobilization: Strategies to reuse the most stable lipase.
    Arana-Peña S; Mendez-Sanchez C; Rios NS; Ortiz C; Gonçalves LRB; Fernandez-Lafuente R
    Int J Biol Macromol; 2019 Jun; 131():989-997. PubMed ID: 30917914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of lipase cross-linked enzyme aggregates in octyl-modified mesocellular foams.
    Jin W; Xu Y; Yu XW
    Int J Biol Macromol; 2019 Jun; 130():342-347. PubMed ID: 30825565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of nanobiocatalysts through the immobilization of Pseudomonas fluorescens lipase for applications in efficient kinetic resolution of racemic compounds.
    Dwivedee BP; Bhaumik J; Rai SK; Laha JK; Banerjee UC
    Bioresour Technol; 2017 Sep; 239():464-471. PubMed ID: 28538202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutaraldehyde modification of lipases immobilized on octyl agarose beads: Roles of the support enzyme loading and chemical amination of the enzyme on the final enzyme features.
    Abellanas-Perez P; Carballares D; Fernandez-Lafuente R; Rocha-Martin J
    Int J Biol Macromol; 2023 Sep; 248():125853. PubMed ID: 37460068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization on octyl-agarose beads and some catalytic features of commercial preparations of lipase a from Candida antarctica (Novocor ADL): Comparison with immobilized lipase B from Candida antarctica.
    Arana-Peña S; Lokha Y; Fernández-Lafuente R
    Biotechnol Prog; 2019 Jan; 35(1):e2735. PubMed ID: 30341806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica.
    Pinheiro BB; Rios NS; Rodríguez Aguado E; Fernandez-Lafuente R; Freire TM; Fechine PBA; Dos Santos JCS; Gonçalves LRB
    Int J Biol Macromol; 2019 Jun; 130():798-809. PubMed ID: 30817969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.