BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31491511)

  • 21. Tuning Immobilized Enzyme Features by Combining Solid-Phase Physicochemical Modification and Mineralization.
    Guimarães JR; Carballares D; Rocha-Martin J; Tardioli PW; Fernandez-Lafuente R
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of protein load on stability of immobilized enzymes.
    Fernandez-Lopez L; Pedrero SG; Lopez-Carrobles N; Gorines BC; Virgen-Ortíz JJ; Fernandez-Lafuente R
    Enzyme Microb Technol; 2017 Mar; 98():18-25. PubMed ID: 28110660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the Immobilization Strategy on the Efficiency and Recyclability of the Versatile Lipase from
    Molina-Gutiérrez M; Hakalin NLS; Rodríguez-Sánchez L; Alcaraz L; López FA; Martínez MJ; Prieto A
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30987194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde.
    Zaak H; Fernandez-Lopez L; Otero C; Sassi M; Fernandez-Lafuente R
    Enzyme Microb Technol; 2017 Nov; 106():67-74. PubMed ID: 28859812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immobilization of Lipases on Heterofunctional Octyl-Glyoxyl Agarose Supports: Improved Stability and Prevention of the Enzyme Desorption.
    Rueda N; Dos Santos JC; Torres R; Ortiz C; Barbosa O; Fernandez-Lafuente R
    Methods Enzymol; 2016; 571():73-85. PubMed ID: 27112395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immobilization of Pseudomonas fluorescens lipase onto magnetic nanoparticles for resolution of 2-octanol.
    Xun EN; Lv XL; Kang W; Wang JX; Zhang H; Wang L; Wang Z
    Appl Biochem Biotechnol; 2012 Oct; 168(3):697-707. PubMed ID: 22847187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of the Biocatalytic Properties of a Novel Lipase from Psychrophilic
    Ruiz M; Plata E; Castillo JJ; Ortiz CC; López G; Baena S; Torres R; Fernandez-Lafuente R
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33809323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of lipase properties in macro-aqueous systems by controlled enzyme immobilization: enantioselective hydrolysis of a chiral ester by immobilized Pseudomonas lipase.
    Fernández-Lorente G; Terreni M; Mateo C; Bastida A; Fernández-Lafuente R; Dalmases P; Huguet J; Guisán JM
    Enzyme Microb Technol; 2001 Mar; 28(4-5):389-396. PubMed ID: 11240196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkaline lipase from Pseudomonas fluorescens non-covalently immobilised on pristine versus oxidised multi-wall carbon nanotubes as efficient and recyclable catalytic systems in the synthesis of Solketal esters.
    Boncel S; Zniszczoł A; Szymańska K; Mrowiec-Białoń J; Jarzębski A; Walczak KZ
    Enzyme Microb Technol; 2013 Sep; 53(4):263-70. PubMed ID: 23931692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stabilization of Candida antarctica Lipase B (CALB) Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI).
    Peirce S; Tacias-Pascacio VG; Russo ME; Marzocchella A; Virgen-Ortíz JJ; Fernandez-Lafuente R
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27338317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembly of Pseudomonas fluorescens lipase into bimolecular aggregates dramatically affects functional properties.
    Fernández-Lorente G; Palomo JM; Fuentes M; Mateo C; Guisán JM; Fernández-Lafuente R
    Biotechnol Bioeng; 2003 Apr; 82(2):232-7. PubMed ID: 12584765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The immobilization protocol greatly alters the effects of metal phosphate modification on the activity/stability of immobilized lipases.
    Guimarães JR; Carballares D; Rocha-Martin J; Tardioli PW; Fernandez-Lafuente R
    Int J Biol Macromol; 2022 Dec; 222(Pt B):2452-2466. PubMed ID: 36220414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulating the properties of the lipase from Thermomyces lanuginosus immobilized on octyl agarose beads by altering the immobilization conditions.
    Lokha Y; Arana-Peña S; Rios NS; Mendez-Sanchez C; Gonçalves LRB; Lopez-Gallego F; Fernandez-Lafuente R
    Enzyme Microb Technol; 2020 Feb; 133():109461. PubMed ID: 31874681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilizing enzymes: how to create more suitable biocatalysts.
    Bornscheuer UT
    Angew Chem Int Ed Engl; 2003 Jul; 42(29):3336-7. PubMed ID: 12888957
    [No Abstract]   [Full Text] [Related]  

  • 35. Cloning and expression of Pseudomonas fluorescens 26-2 lipase gene in Pichia pastoris and characterizing for transesterification.
    Yang J; Zhang B; Yan Y
    Appl Biochem Biotechnol; 2009 Nov; 159(2):355-65. PubMed ID: 19005622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of immobilized/stabilized biocatalysts of β-glucosidases from different sources: Importance of the support active groups and the immobilization protocol.
    de Andrades D; Graebin NG; Ayub MAZ; Fernandez-Lafuente R; Rodrigues RC
    Biotechnol Prog; 2019 Nov; 35(6):e2890. PubMed ID: 31374157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions.
    Rodrigues RC; Virgen-Ortíz JJ; Dos Santos JCS; Berenguer-Murcia Á; Alcantara AR; Barbosa O; Ortiz C; Fernandez-Lafuente R
    Biotechnol Adv; 2019; 37(5):746-770. PubMed ID: 30974154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations.
    Venditti I; Palocci C; Chronopoulou L; Fratoddi I; Fontana L; Diociaiuti M; Russo MV
    Colloids Surf B Biointerfaces; 2015 Jul; 131():93-101. PubMed ID: 25969418
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis.
    Mendes AA; Oliveira PC; Vélez AM; Giordano RC; Giordano Rde L; de Castro HF
    Int J Biol Macromol; 2012 Apr; 50(3):503-11. PubMed ID: 22285987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Noble metal nanoparticle-based networks as a new platform for lipase immobilization.
    Chronopoulou L; Scaramuzzo FA; Fioravanti R; di Nitto A; Cerra S; Palocci C; Fratoddi I
    Int J Biol Macromol; 2020 Mar; 146():790-797. PubMed ID: 31726175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.