These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31491624)
1. Biodegradation of typical BFRs 2,4,6-tribromophenol by an indigenous strain Bacillus sp. GZT isolated from e-waste dismantling area through functional heterologous expression. Liang Z; Li G; Mai B; An T Sci Total Environ; 2019 Dec; 697():134159. PubMed ID: 31491624 [TBL] [Abstract][Full Text] [Related]
2. Purifying, cloning and characterizing a novel dehalogenase from Bacillus sp. GZT to enhance the biodegradation of 2,4,6-tribromophenol in water. Liang Z; Li G; An T Environ Pollut; 2017 Jun; 225():104-111. PubMed ID: 28359974 [TBL] [Abstract][Full Text] [Related]
3. The microbial degradation of 2,4,6-tribromophenol (TBP) in water/sediments interface: Investigating bioaugmentation using Bacillus sp. GZT. Xiong J; Li G; An T Sci Total Environ; 2017 Jan; 575():573-580. PubMed ID: 27613672 [TBL] [Abstract][Full Text] [Related]
4. Biodegradation kinetics and mechanism of 2,4,6-tribromophenol by Bacillus sp. GZT: a phenomenon of xenobiotic methylation during debromination. Zu L; Li G; An T; Wong PK Bioresour Technol; 2012 Apr; 110():153-9. PubMed ID: 22357290 [TBL] [Abstract][Full Text] [Related]
5. Enhancing tetrabromobisphenol A biodegradation in river sediment microcosms and understanding the corresponding microbial community. Li G; Xiong J; Wong PK; An T Environ Pollut; 2016 Jan; 208(Pt B):796-802. PubMed ID: 26602791 [TBL] [Abstract][Full Text] [Related]
6. Draft Genome Sequence of Bacillus sp. GZT, a 2,4,6-Tribromophenol-Degrading Strain Isolated from the River Sludge of an Electronic Waste-Dismantling Region. Liang Z; Li G; An T; Das R Genome Announc; 2016 Jun; 4(3):. PubMed ID: 27257197 [TBL] [Abstract][Full Text] [Related]
7. Microbial detoxification of 2,4,6-tribromophenol via a novel process with consecutive oxidative and hydrolytic debromination: Biochemical, genetic and evolutionary characterization. Min J; Fang S; Peng J; Lv X; Xu L; Li Y; Hu X Environ Res; 2022 Apr; 205():112494. PubMed ID: 34890595 [TBL] [Abstract][Full Text] [Related]
8. Combating toxic emissions from thermal recycling of polymeric fractions laden with novel brominated flame retardants (NBFRs) in e-waste: an in-situ approach using Ca(OH) Kuttiyathil MS; Ali L; Ahmed OH; Altarawneh M Environ Sci Pollut Res Int; 2023 Sep; 30(43):98300-98313. PubMed ID: 37606772 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of 2,4,6-tribromophenol by Ochrobactrum sp. strain TB01. Yamada T; Takahama Y; Yamada Y Biosci Biotechnol Biochem; 2008 May; 72(5):1264-71. PubMed ID: 18460800 [TBL] [Abstract][Full Text] [Related]
11. Investigating the debrominations of a subset of brominated flame retardants by biogenic reactive sulfur species. Wu X; Fan K; Wang Q; Cao Q; Chen C; Xun L; Liu H Environ Int; 2023 Apr; 174():107873. PubMed ID: 36933304 [TBL] [Abstract][Full Text] [Related]
12. Biodegradability of tetrabromobisphenol A and tribromophenol by activated sludge. Brenner A; Mukmenev I; Abeliovich A; Kushmaro A Ecotoxicology; 2006 May; 15(4):399-402. PubMed ID: 16708282 [TBL] [Abstract][Full Text] [Related]
13. Pollution profiles and risk assessment of PBDEs and phenolic brominated flame retardants in water environments within a typical electronic waste dismantling region. Xiong J; An T; Zhang C; Li G Environ Geochem Health; 2015 Jun; 37(3):457-73. PubMed ID: 25503846 [TBL] [Abstract][Full Text] [Related]
14. Genome sequence of a spore-laccase forming, BPA-degrading Bacillus sp. GZB isolated from an electronic-waste recycling site reveals insights into BPA degradation pathways. Das R; Liang Z; Li G; Mai B; An T Arch Microbiol; 2019 Jul; 201(5):623-638. PubMed ID: 30747263 [TBL] [Abstract][Full Text] [Related]
15. Characterization of brominated flame retardants from e-waste components in China. Yu D; Duan H; Song Q; Liu Y; Li Y; Li J; Shen W; Luo J; Wang J Waste Manag; 2017 Oct; 68():498-507. PubMed ID: 28756124 [TBL] [Abstract][Full Text] [Related]
16. Plant uptake of atmospheric brominated flame retardants at an E-waste site in southern China. Tian M; Chen SJ; Wang J; Luo Y; Luo XJ; Mai BX Environ Sci Technol; 2012 Mar; 46(5):2708-14. PubMed ID: 22308972 [TBL] [Abstract][Full Text] [Related]
17. Examining the relationship between brominated flame retardants (BFR) exposure and changes of thyroid hormone levels around e-waste dismantling sites. Wang H; Zhang Y; Liu Q; Wang F; Nie J; Qian Y Int J Hyg Environ Health; 2010 Sep; 213(5):369-80. PubMed ID: 20598942 [TBL] [Abstract][Full Text] [Related]
18. In silico and biological analysis of anti-androgen activity of the brominated flame retardants ATE, BATE and DPTE in zebrafish. Pradhan A; Asnake S; Kharlyngdoh JB; Modig C; Olsson PE Chem Biol Interact; 2015 May; 233():35-45. PubMed ID: 25818047 [TBL] [Abstract][Full Text] [Related]
19. Halogenated flame retardants and organophosphate esters in the air of electronic waste recycling facilities: Evidence of high concentrations and multiple exposures. Gravel S; Lavoué J; Bakhiyi B; Diamond ML; Jantunen LM; Lavoie J; Roberge B; Verner MA; Zayed J; Labrèche F Environ Int; 2019 Jul; 128():244-253. PubMed ID: 31059919 [TBL] [Abstract][Full Text] [Related]
20. Brominated flame retardants in the atmosphere of E-waste and rural sites in southern China: seasonal variation, temperature dependence, and gas-particle partitioning. Tian M; Chen SJ; Wang J; Zheng XB; Luo XJ; Mai BX Environ Sci Technol; 2011 Oct; 45(20):8819-25. PubMed ID: 21902255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]