These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31492023)

  • 1. Constitutive Models for the Prediction of the Hot Deformation Behavior of the 10%Cr Steel Alloy.
    Shokry A; Gowid S; Kharmanda G; Mahdi E
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31492023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Flow Stress of Annealed 7075 Al Alloy in Hot Deformation Using Strain-Compensated Arrhenius and Neural Network Models.
    Yang H; Bu H; Li M; Lu X
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Constitutive Models and Microstructure Evolution of GW103K Magnesium Alloy during Hot Deformation.
    Yin L; Wu Y
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot Deformation Behavior of the 25CrMo4 Steel Using a Modified Arrhenius Model.
    Xu H; Tian T; Zhang J; Niu L; Zhu H; Wang X; Zhang Q
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified Fields-Backofen and Zerilli-Armstrong constitutive models to predict the hot deformation behavior in titanium-based alloys.
    Shokry A
    Sci Rep; 2024 Apr; 14(1):8359. PubMed ID: 38600255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Comparation of Arrhenius-Type and Modified Johnson-Cook Constitutive Models at Elevated Temperature for Annealed TA31 Titanium Alloy.
    Yang S; Liang P; Gao F; Song D; Jiang P; Zhao M; Kong N
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow Behavior of AA5005 Alloy at High Temperature and Low Strain Rate Based on Arrhenius-Type Equation and Back Propagation Artificial Neural Network (BP-ANN) Model.
    Li S; Chen W; Bhandari KS; Jung DW; Chen X
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Modified Back Propagation Artificial Neural Network Model Based on Genetic Algorithm to Predict the Flow Behavior of 5754 Aluminum Alloy.
    Huang C; Jia X; Zhang Z
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29883394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive Equations for Describing the Hot Compressed Behavior of TC4-DT Titanium Alloy.
    Wang H; Wang C; Li M; Ma R; Zhao J
    Materials (Basel); 2020 Aug; 13(15):. PubMed ID: 32756419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the Flow Behaviour of Al Alloy Sheets at Elevated Temperatures Using a Modified Zerilli-Armstrong Model and Phenomenological-Based Constitutive Models.
    Abd El-Aty A; Xu Y; Hou Y; Zhang SH; Ha S; Xia L; Alzahrani B; Ali A; Ahmed MMZ; Shokry A
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Warm Deformation Behavior and Flow Stress Modeling of AZ31B Magnesium Alloy under Tensile Deformation.
    Murugesan M; Yu JH; Chung W; Lee CW
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Artificial Neural Network-Based Models to Investigate Deformation Behavior of AZ31B Magnesium Alloy at Warm Tensile Deformation.
    Murugesan M; Yu JH; Chung W; Lee CW
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study on improved Arrhenius-type and artificial neural network models to predict high-temperature flow behaviors in 20MnNiMo alloy.
    Quan GZ; Yu CT; Liu YY; Xia YF
    ScientificWorldJournal; 2014; 2014():108492. PubMed ID: 24688358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Constitutive Models and Machine Learning Models to Predict the Elevated Temperature Flow Behavior of TiAl Alloy.
    Zhao R; He J; Tian H; Jing Y; Xiong J
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic-Algorithm-Based Inverse Optimization Identification Method for Hot-Temperature Constitutive Model Parameters of Ti6Al4V Alloy.
    Chen X; Su Z; Sun J; Yang Z; Zhang B; Zhou Z
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the Strain Compensation Model and Processing Maps for Description of Hot Deformation Behavior of Metastable β Titanium Alloy.
    Lypchanskyi O; Śleboda T; Łukaszek-Sołek A; Zyguła K; Wojtaszek M
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of deformation behavior and strain-induced precipitations in Al-Zn-Mg-Cu alloys across a wide temperature range.
    Zhang Q; Zuo J; Yang C; Xia Y; Shu X; Mei B; Wang Y; Cui L
    Sci Rep; 2024 Jun; 14(1):14722. PubMed ID: 38926495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive modelling of hot deformation behaviour of a CoCrFeMnNi high-entropy alloy.
    Patnamsetty M; Saastamoinen A; Somani MC; Peura P
    Sci Technol Adv Mater; 2020; 21(1):43-55. PubMed ID: 32158507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot Tensile Deformation Behavior and Constitutive Models of GH3230 Superalloy Double-Sheet.
    Chen Y; Li H; Zhang S; Luo J; Teng J; Lv Y; Li M
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of True Stress at Hot Deformation of High Manganese Steel by Artificial Neural Network Modeling.
    Churyumov AY; Kazakova AA
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.