These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 31492043)
21. The potential of one-part alkali-activated materials (AAMs) as a concrete patch mortar. Yusslee E; Beskhyroun S Sci Rep; 2022 Sep; 12(1):15902. PubMed ID: 36151108 [TBL] [Abstract][Full Text] [Related]
22. Study on the Compressive Strength and Reaction Mechanism of Alkali-Activated Geopolymer Materials Using Coal Gangue and Ground Granulated Blast Furnace Slag. Wang X; Liu F; Li L; Chen W; Cong X; Yu T; Zhang B Materials (Basel); 2024 Jul; 17(15):. PubMed ID: 39124324 [TBL] [Abstract][Full Text] [Related]
23. Industrial by-products-derived binders for in-situ remediation of high Pb content pyrite ash: Synergistic use of ground granulated blast furnace slag and steel slag to achieve efficient Pb retention and CO Liu Y; Molinari S; Dalconi MC; Valentini L; Bellotto MP; Ferrari G; Pellay R; Rilievo G; Vianello F; Famengo A; Salviulo G; Artioli G Environ Pollut; 2024 Mar; 345():123455. PubMed ID: 38301818 [TBL] [Abstract][Full Text] [Related]
24. Effect of Various Fly Ash and Ground Granulated Blast Furnace Slag Content on Concrete Properties: Experiments and Modelling. Qu Z; Liu Z; Si R; Zhang Y Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591357 [TBL] [Abstract][Full Text] [Related]
25. Strength Development and Hydration Behavior of Self-Activation of Commercial Ground Granulated Blast-Furnace Slag Mixed with Purified Water. Park H; Jeong Y; Jeong JH; Oh JE Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773312 [TBL] [Abstract][Full Text] [Related]
26. Effect of Early Age-Curing Methods on Drying Shrinkage of Alkali-Activated Slag Concrete. Cai Y; Yu L; Yang Y; Gao Y; Yang C Materials (Basel); 2019 May; 12(10):. PubMed ID: 31109048 [TBL] [Abstract][Full Text] [Related]
27. Effect of Ca(OH) Dai X; Aydın S; Yardımcı MY; Lesage K; Schutter G Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361459 [TBL] [Abstract][Full Text] [Related]
28. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder. Zhong S; Ni K; Li J Waste Manag; 2012 Jul; 32(7):1468-72. PubMed ID: 22440404 [TBL] [Abstract][Full Text] [Related]
29. Preparation of durable magnesium oxysulfate cement with the incorporation of mineral admixtures and sequestration of carbon dioxide. Li Q; Su A; Gao X Sci Total Environ; 2022 Feb; 809():152127. PubMed ID: 34890683 [TBL] [Abstract][Full Text] [Related]
30. The Length Change Ratio of Ground Granulated Blast Furnace Slag-Based Geopolymer Blended with Magnesium Oxide Cured in Various Environments. Chen YC; Lee WH; Cheng TW; Chen W; Li YF Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015642 [TBL] [Abstract][Full Text] [Related]
31. Experiment on the Properties of Soda Residue-Activated Ground Granulated Blast Furnace Slag Mortars with Different Activators. Lin Y; Xu D; Ji W; Zhao X Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629605 [TBL] [Abstract][Full Text] [Related]
32. Compressive Strength and Chloride Ion Penetration Resistance of GGBFS-Based Alkali-Activated Composites Containing Ferronickel Slag Aggregates. Lee JI; Kim CY; Yoon JH; Choi SJ Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410492 [TBL] [Abstract][Full Text] [Related]
33. Prolonging the Durability of Maritime Constructions through a Sustainable and Salt-Resistant Cement Composite. Heikal M; Ali MA; Ghernaout D; Elboughdiri N; Ghernaout B; Bendary HI Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959473 [TBL] [Abstract][Full Text] [Related]
34. Compressive Strength and Durability of FGD Gypsum-Based Mortars Blended with Ground Granulated Blast Furnace Slag. Pang M; Sun Z; Huang H Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751596 [TBL] [Abstract][Full Text] [Related]
35. Macroscopic Properties and Pore Structure Fractal Characteristics of Alkali-Activated Metakaolin-Slag Composite Cementitious Materials. Zhan J; Fu B; Cheng Z Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501613 [TBL] [Abstract][Full Text] [Related]
36. Properties of Alkali-Activated Slag Cement Activated by Weakly Alkaline Activator. He J; Yu S; Sang G; He J; Wang J; Chen Z Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241497 [TBL] [Abstract][Full Text] [Related]
37. Calorimetric Studies of Alkali-Activated Blast-Furnace Slag Cements at Early Hydration Processes in the Temperature Range of 20-80 °C. Usherov-Marshak A; Vaičiukynienė D; Krivenko P; Bumanis G Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640268 [TBL] [Abstract][Full Text] [Related]
38. Understanding the Role of Metakaolin towards Mitigating the Shrinkage Behavior of Alkali-Activated Slag. Fu B; Cheng Z; Han J; Li N Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832363 [TBL] [Abstract][Full Text] [Related]
39. Effect of Internal Curing by Super Absorbent Polymer on the Autogenous Shrinkage of Alkali-Activated Slag Mortars. Wang P; Chen H; Chen P; Pan J; Xu Y; Wang H; Shen W; Cao K Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32998283 [TBL] [Abstract][Full Text] [Related]
40. Alkali Activation of Copper and Nickel Slag Composite Cementitious Materials. Zhang T; Zhi S; Li T; Zhou Z; Li M; Han J; Li W; Zhang D; Guo L; Wu Z Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32150952 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]