These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31492094)

  • 1. PTPD: predicting therapeutic peptides by deep learning and word2vec.
    Wu C; Gao R; Zhang Y; De Marinis Y
    BMC Bioinformatics; 2019 Sep; 20(1):456. PubMed ID: 31492094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence.
    Deng L; Wu H; Liu X; Liu H
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticancer peptides prediction with deep representation learning features.
    Lv Z; Cui F; Zou Q; Zhang L; Xu L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33529337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33784381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning improves antimicrobial peptide recognition.
    Veltri D; Kamath U; Shehu A
    Bioinformatics; 2018 Aug; 34(16):2740-2747. PubMed ID: 29590297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-WET: a deep learning-based approach for predicting DNA-binding proteins using word embedding techniques with weighted features.
    Mahmud SMH; Goh KOM; Hosen MF; Nandi D; Shoombuatong W
    Sci Rep; 2024 Feb; 14(1):2961. PubMed ID: 38316843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional neural networks with image representation of amino acid sequences for protein function prediction.
    Sara ST; Hasan MM; Ahmad A; Shatabda S
    Comput Biol Chem; 2021 Jun; 92():107494. PubMed ID: 33930742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent Neural Network for Predicting Transcription Factor Binding Sites.
    Shen Z; Bao W; Huang DS
    Sci Rep; 2018 Oct; 8(1):15270. PubMed ID: 30323198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepTPpred: A Deep Learning Approach With Matrix Factorization for Predicting Therapeutic Peptides by Integrating Length Information.
    Cui Z; Wang SG; He Y; Chen ZH; Zhang QH
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4611-4622. PubMed ID: 37368803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of 8-state protein secondary structures by a novel deep learning architecture.
    Zhang B; Li J; Lü Q
    BMC Bioinformatics; 2018 Aug; 19(1):293. PubMed ID: 30075707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model.
    Kurata H; Tsukiyama S; Manavalan B
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35772910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. kmer2vec: A Novel Method for Comparing DNA Sequences by word2vec Embedding.
    Ren R; Yin C; S-T Yau S
    J Comput Biol; 2022 Sep; 29(9):1001-1021. PubMed ID: 35593919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Word2vec convolutional neural networks for classification of news articles and tweets.
    Jang B; Kim I; Kim JW
    PLoS One; 2019; 14(8):e0220976. PubMed ID: 31437181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PSSP-MVIRT: peptide secondary structure prediction based on a multi-view deep learning architecture.
    Cao X; He W; Chen Z; Li Y; Wang K; Zhang H; Wei L; Cui L; Su R; Wei L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Deep Learning Framework for Gene Ontology Annotations With Sequence- and Network-Based Information.
    Zhang F; Song H; Zeng M; Wu FX; Li Y; Pan Y; Li M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2208-2217. PubMed ID: 31985440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrastive learning for enhancing feature extraction in anticancer peptides.
    Lee B; Shin D
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38725157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACP-DL: A Deep Learning Long Short-Term Memory Model to Predict Anticancer Peptides Using High-Efficiency Feature Representation.
    Yi HC; You ZH; Zhou X; Cheng L; Li X; Jiang TH; Chen ZH
    Mol Ther Nucleic Acids; 2019 Sep; 17():1-9. PubMed ID: 31173946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CELA-MFP: a contrast-enhanced and label-adaptive framework for multi-functional therapeutic peptides prediction.
    Fang Y; Luo M; Ren Z; Wei L; Wei DQ
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 39038935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.