These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 31492094)
21. DeepAVP: A Dual-Channel Deep Neural Network for Identifying Variable-Length Antiviral Peptides. Li J; Pu Y; Tang J; Zou Q; Guo F IEEE J Biomed Health Inform; 2020 Oct; 24(10):3012-3019. PubMed ID: 32142462 [TBL] [Abstract][Full Text] [Related]
22. Identifying multi-functional bioactive peptide functions using multi-label deep learning. Tang W; Dai R; Yan W; Zhang W; Bin Y; Xia E; Xia J Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34651655 [TBL] [Abstract][Full Text] [Related]
23. Probe Efficient Feature Representation of Gapped K-mer Frequency Vectors from Sequences Using Deep Neural Networks. Cao Z; Zhang S IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):657-667. PubMed ID: 30183639 [TBL] [Abstract][Full Text] [Related]
24. End-to-End Representation Learning for Chemical-Chemical Interaction Prediction. Kwon S; Yoon S IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1436-1447. PubMed ID: 30106687 [TBL] [Abstract][Full Text] [Related]
25. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks. Guo Y; Wang B; Li W; Yang B J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785 [TBL] [Abstract][Full Text] [Related]
26. SPVec: A Word2vec-Inspired Feature Representation Method for Drug-Target Interaction Prediction. Zhang YF; Wang X; Kaushik AC; Chu Y; Shan X; Zhao MZ; Xu Q; Wei DQ Front Chem; 2019; 7():895. PubMed ID: 31998687 [TBL] [Abstract][Full Text] [Related]
27. CysPresso: a classification model utilizing deep learning protein representations to predict recombinant expression of cysteine-dense peptides. Ouellet S; Ferguson L; Lau AZ; Lim TKY BMC Bioinformatics; 2023 May; 24(1):200. PubMed ID: 37193950 [TBL] [Abstract][Full Text] [Related]
28. An efficient consolidation of word embedding and deep learning techniques for classifying anticancer peptides: FastText+BiLSTM. Karakaya O; Kilimci ZH PeerJ Comput Sci; 2024; 10():e1831. PubMed ID: 38435607 [TBL] [Abstract][Full Text] [Related]
29. CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model. Wang H; Zhao J; Zhao H; Li H; Wang J BMC Bioinformatics; 2021 Oct; 22(1):512. PubMed ID: 34670488 [TBL] [Abstract][Full Text] [Related]
30. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction. Han Y; Kim D BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985 [TBL] [Abstract][Full Text] [Related]
31. HetEnc: a deep learning predictive model for multi-type biological dataset. Wu L; Liu X; Xu J BMC Genomics; 2019 Aug; 20(1):638. PubMed ID: 31395005 [TBL] [Abstract][Full Text] [Related]
32. Towards dropout training for convolutional neural networks. Wu H; Gu X Neural Netw; 2015 Nov; 71():1-10. PubMed ID: 26277608 [TBL] [Abstract][Full Text] [Related]
33. IVS2vec: A tool of Inverse Virtual Screening based on word2vec and deep learning techniques. Zhang H; Liao L; Cai Y; Hu Y; Wang H Methods; 2019 Aug; 166():57-65. PubMed ID: 30910562 [TBL] [Abstract][Full Text] [Related]
34. Classification of Alzheimer's Disease Based on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and Max Pooling. Wang SH; Phillips P; Sui Y; Liu B; Yang M; Cheng H J Med Syst; 2018 Mar; 42(5):85. PubMed ID: 29577169 [TBL] [Abstract][Full Text] [Related]
35. Detecting sequence signals in targeting peptides using deep learning. Almagro Armenteros JJ; Salvatore M; Emanuelsson O; Winther O; von Heijne G; Elofsson A; Nielsen H Life Sci Alliance; 2019 Oct; 2(5):. PubMed ID: 31570514 [TBL] [Abstract][Full Text] [Related]
36. Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences. Li H; Gong XJ; Yu H; Zhou C Molecules; 2018 Aug; 23(8):. PubMed ID: 30071670 [TBL] [Abstract][Full Text] [Related]
37. DNA sequences performs as natural language processing by exploiting deep learning algorithm for the identification of N4-methylcytosine. Wahab A; Tayara H; Xuan Z; Chong KT Sci Rep; 2021 Jan; 11(1):212. PubMed ID: 33420191 [TBL] [Abstract][Full Text] [Related]
38. Accurate classification of membrane protein types based on sequence and evolutionary information using deep learning. Guo L; Wang S; Li M; Cao Z BMC Bioinformatics; 2019 Dec; 20(Suppl 25):700. PubMed ID: 31874615 [TBL] [Abstract][Full Text] [Related]
39. Aspect extraction on user textual reviews using multi-channel convolutional neural network. Da'u A; Salim N PeerJ Comput Sci; 2019; 5():e191. PubMed ID: 33816844 [TBL] [Abstract][Full Text] [Related]
40. On Minimizers and Convolutional Filters: Theoretical Connections and Applications to Genome Analysis. Yu YW J Comput Biol; 2024 May; 31(5):381-395. PubMed ID: 38687333 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]