These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 31492094)
41. PD-BertEDL: An Ensemble Deep Learning Method Using BERT and Multivariate Representation to Predict Peptide Detectability. Wang H; Wang J; Feng Z; Li Y; Zhao H Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293242 [TBL] [Abstract][Full Text] [Related]
42. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction. Guo Y; Li W; Wang B; Liu H; Zhou D BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331 [TBL] [Abstract][Full Text] [Related]
43. Predicting enhancers with deep convolutional neural networks. Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068 [TBL] [Abstract][Full Text] [Related]
44. iEnhancer-DCLA: using the original sequence to identify enhancers and their strength based on a deep learning framework. Liao M; Zhao JP; Tian J; Zheng CH BMC Bioinformatics; 2022 Nov; 23(1):480. PubMed ID: 36376800 [TBL] [Abstract][Full Text] [Related]
45. Computational prediction of therapeutic peptides based on graph index. Xu C; Ge L; Zhang Y; Dehmer M; Gutman I J Biomed Inform; 2017 Nov; 75():63-69. PubMed ID: 28958485 [TBL] [Abstract][Full Text] [Related]
46. ACPNet: A Deep Learning Network to Identify Anticancer Peptides by Hybrid Sequence Information. Sun M; Yang S; Hu X; Zhou Y Molecules; 2022 Feb; 27(5):. PubMed ID: 35268644 [TBL] [Abstract][Full Text] [Related]
47. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features. Lu X; Chen Y; Li X IEEE Trans Image Process; 2018 Jan.; 27(1):106-120. PubMed ID: 28952940 [TBL] [Abstract][Full Text] [Related]
48. PreTP-EL: prediction of therapeutic peptides based on ensemble learning. Guo Y; Yan K; Lv H; Liu B Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34459488 [TBL] [Abstract][Full Text] [Related]
49. LogEvent2vec: LogEvent-to-Vector Based Anomaly Detection for Large-Scale Logs in Internet of Things. Wang J; Tang Y; He S; Zhao C; Sharma PK; Alfarraj O; Tolba A Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32357404 [TBL] [Abstract][Full Text] [Related]
50. Reverse de Bruijn: Utilizing Reverse Peptide Synthesis to Cover All Amino Acid Orenstein Y J Comput Biol; 2020 Mar; 27(3):376-385. PubMed ID: 31995404 [No Abstract] [Full Text] [Related]
51. AntiMF: A deep learning framework for predicting anticancer peptides based on multi-view feature extraction. Liu J; Li M; Chen X Methods; 2022 Nov; 207():38-43. PubMed ID: 36100141 [TBL] [Abstract][Full Text] [Related]
52. Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model. Akbar S; Raza A; Zou Q BMC Bioinformatics; 2024 Mar; 25(1):102. PubMed ID: 38454333 [TBL] [Abstract][Full Text] [Related]
53. Mass spectrum sequential subtraction speeds up searching large peptide MS/MS spectra datasets against large nucleotide databases for proteogenomics. Helmy M; Sugiyama N; Tomita M; Ishihama Y Genes Cells; 2012 Aug; 17(8):633-44. PubMed ID: 22686349 [TBL] [Abstract][Full Text] [Related]
54. Deep learning for DNase I hypersensitive sites identification. Lyu C; Wang L; Zhang J BMC Genomics; 2018 Dec; 19(Suppl 10):905. PubMed ID: 30598079 [TBL] [Abstract][Full Text] [Related]
55. Predicting the Absorption Potential of Chemical Compounds Through a Deep Learning Approach. Shin M; Jang D; Nam H; Lee KH; Lee D IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):432-440. PubMed ID: 26930688 [TBL] [Abstract][Full Text] [Related]
56. Predicting protein-ligand binding residues with deep convolutional neural networks. Cui Y; Dong Q; Hong D; Wang X BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287 [TBL] [Abstract][Full Text] [Related]
57. Deep learning architectures for prediction of nucleosome positioning from sequences data. Di Gangi M; Lo Bosco G; Rizzo R BMC Bioinformatics; 2018 Nov; 19(Suppl 14):418. PubMed ID: 30453896 [TBL] [Abstract][Full Text] [Related]
58. Exploring microRNA Regulation of Cancer with Context-Aware Deep Cancer Classifier. Pyman B; Sedghi A; Azizi S; Tyryshkin K; Renwick N; Mousavi P Pac Symp Biocomput; 2019; 24():160-171. PubMed ID: 30864319 [TBL] [Abstract][Full Text] [Related]
59. A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology. Qiu Y; Yan S; Gundreddy RR; Wang Y; Cheng S; Liu H; Zheng B J Xray Sci Technol; 2017; 25(5):751-763. PubMed ID: 28436410 [TBL] [Abstract][Full Text] [Related]
60. Deep learning models for bacteria taxonomic classification of metagenomic data. Fiannaca A; La Paglia L; La Rosa M; Lo Bosco G; Renda G; Rizzo R; Gaglio S; Urso A BMC Bioinformatics; 2018 Jul; 19(Suppl 7):198. PubMed ID: 30066629 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]