These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31492145)

  • 1. PIV investigation of the flow fields in subject-specific vertebro-basilar (VA-BA) junction.
    Zhu G; Wei Y; Yuan Q; Yang J; Yeo JH
    Biomed Eng Online; 2019 Sep; 18(1):93. PubMed ID: 31492145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of the angle of confluence on the flow in a vertebro-basilar junction model.
    Ravensbergen J; Krijger JK; Hillen B; Hoogstraten HW
    J Biomech; 1996 Mar; 29(3):281-99. PubMed ID: 8850635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of Vortices in Idealised Branching Vessels: A CFD Benchmark Study.
    Xue Y; Hellmuth R; Shin DH
    Cardiovasc Eng Technol; 2020 Oct; 11(5):544-559. PubMed ID: 32666327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of blood velocity and vessel geometric parameters on wall shear stress.
    Pan F; Mori N; Mugikura S; Ohta M; Anzai H
    Med Eng Phys; 2024 Feb; 124():104112. PubMed ID: 38418022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation.
    Craven BA; Aycock KI; Manning KB
    Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational and experimental assessment of influences of hemodynamic shear stress on carotid plaque.
    Zhou H; Meng L; Zhou W; Xin L; Xia X; Li S; Zheng H; Niu L
    Biomed Eng Online; 2017 Jul; 16(1):92. PubMed ID: 28755660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards the prediction of flow-induced shear stress distributions experienced by breast cancer cells in the lymphatics.
    Morley ST; Newport DT; Walsh MT
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2051-2062. PubMed ID: 28741084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Wall Shear Stress Exerted by Flowing Blood in the Human Carotid Artery: Ultrasound Doppler Velocimetry and Echo Particle Image Velocimetry.
    Gates PE; Gurung A; Mazzaro L; Aizawa K; Elyas S; Strain WD; Shore AC; Shandas R
    Ultrasound Med Biol; 2018 Jul; 44(7):1392-1401. PubMed ID: 29678322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow patterns and velocity distributions in the human vertebrobasilar arterial system. Laboratory investigation.
    Kobayashi N; Karino T
    J Neurosurg; 2010 Oct; 113(4):810-9. PubMed ID: 20136394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymptomatic Basilar Artery Plaque Distribution and Vascular Geometry.
    Kim BJ; Kim HY; Jho W; Kim YS; Koh SH; Heo SH; Chang DI; Lee YJ
    J Atheroscler Thromb; 2019 Nov; 26(11):1007-1014. PubMed ID: 30918163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localizing role of hemodynamics in atherosclerosis in several human vertebrobasilar junction geometries.
    Ravensbergen J; Ravensbergen JW; Krijger JK; Hillen B; Hoogstraten HW
    Arterioscler Thromb Vasc Biol; 1998 May; 18(5):708-16. PubMed ID: 9598828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms.
    Ho WH; Tshimanga IJ; Ngoepe MN; Jermy MC; Geoghegan PH
    Cardiovasc Eng Technol; 2020 Feb; 11(1):14-23. PubMed ID: 31820351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of the blunting of the apex on the flow in a vertebro-basilar junction model.
    Ravensbergen J; Krijger JK; Verdaasdonk AL; Hillen B; Hoogstraten HW
    J Biomech Eng; 1997 May; 119(2):195-205. PubMed ID: 9168396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MR-based wall shear stress measurements in fully developed turbulent flow using the Clauser plot method.
    Shokina N; Bauer A; Teschner G; Buchenberg WB; Tropea C; Egger H; Hennig J; Krafft AJ
    J Magn Reson; 2019 Aug; 305():16-21. PubMed ID: 31158791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-Specific Computational Analysis of Hemodynamics in Adult Pulmonary Hypertension.
    Pillalamarri NR; Piskin S; Patnaik SS; Murali S; Finol EA
    Ann Biomed Eng; 2021 Dec; 49(12):3465-3480. PubMed ID: 34799807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of near-wall PIV data on recirculation hemodynamics in a patient-specific moderate stenosis: Experimental-numerical comparison.
    Sharma N; Sastry S; Sankovic JM; Kadambi JR; Banerjee RK
    Biorheology; 2020; 57(2-4):53-76. PubMed ID: 33185583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.