These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31492256)

  • 1. Superior Capacitive Performance of Active Carbons Derived from Loofah Sponge.
    Wang EQ; Mu JC; Zhang YL; Wang QN; Zhang LP
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2416-2422. PubMed ID: 31492256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercapacitors from Activated Carbon Derived from Granatum.
    Wang Q; Yang L; Wang Z; Chen K; Zhang L
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9672-8. PubMed ID: 26682395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and Electrocapacitive Properties of Hierarchical Porous Carbons Based on Loofah Sponge.
    Li Z; Zhai K; Wang G; Li Q; Guo P
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea.
    Yaglikci S; Gokce Y; Yagmur E; Aktas Z
    Environ Technol; 2020 Jan; 41(1):36-48. PubMed ID: 30681935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical properties of kenaf-based activated carbon monolith for supercapacitor electrode applications.
    Park HY; Huang M; Yoon TH; Song KH
    RSC Adv; 2021 Nov; 11(61):38515-38522. PubMed ID: 35493259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical properties of an activated carbon xerogel monolith from resorcinol-formaldehyde for supercapacitor electrode applications.
    Huang M; Yoo SJ; Lee JS; Yoon TH
    RSC Adv; 2021 Oct; 11(53):33192-33201. PubMed ID: 35497528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Synthesis and Electrochemical Studies of Mn
    Mustafa G; Mehboob G; Khisro SN; Javed M; Chen X; Ahmed MS; Ashfaq JM; Asghar G; Hussain S; Rashid AU; Mehboob G
    Front Chem; 2021; 9():717074. PubMed ID: 34513796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of different activating agents on the physical and electrochemical properties of activated carbon electrodes fabricated from wood-dust of
    Shrestha D; Rajbhandari A
    Heliyon; 2021 Sep; 7(9):e07917. PubMed ID: 34522810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Fabrication of Cobalt Oxide Nanoflowers on Ni Foam with Excellent Electrochemical Capacitive Performance.
    Wang H; Zhou D; Li G; Peng F; Yu H
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9754-9. PubMed ID: 26682408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes.
    Yaddanapudi HS; Tian K; Teng S; Tiwari A
    Sci Rep; 2016 Sep; 6():33659. PubMed ID: 27651005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated Carbon Electrodes for Supercapacitors from Purple Corncob (
    Huarote-Garcia E; Cardenas-Riojas AA; Monje IE; López EO; Arias-Pinedo OM; Planes GA; Baena-Moncada AM
    ACS Environ Au; 2024 Mar; 4(2):80-88. PubMed ID: 38525024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitins from Seafood Waste as Sustainable Porous Carbon Precursors for the Development of Eco-Friendly Supercapacitors.
    Brandão ATSC; Costa R; State S; Potorac P; Dias C; Vázquez JA; Valcarcel J; Silva AF; Enachescu M; Pereira CM
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Durability and performance of loofah sponge as carrier for wastewater treatment with high ammonium.
    Zhang J; Yang J; Tian Q; Liang X; Zhu Y; Sand W; Li F; Ma C; Liu Y; Yang B
    Water Environ Res; 2019 Jul; 91(7):581-587. PubMed ID: 30695121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Performance of Chemically Activated Carbons from Sawdust as Supercapacitor Electrodes.
    Nazhipkyzy M; Yeleuov M; Sultakhan ST; Maltay AB; Zhaparova AA; Assylkhanova DD; Nemkayeva RR
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-Enriched Reduced Graphene Oxide for High Performance Supercapacitor Electrode.
    Chen L; Chen X; Wen Y; Wang B; Wu Y; Sheng Z; Wu C
    J Nanosci Nanotechnol; 2020 Aug; 20(8):4854-4859. PubMed ID: 32126665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoflake-Modulated La
    Patil SJ; Bulakhe RN; Lokhande CD
    Chempluschem; 2015 Sep; 80(9):1478-1487. PubMed ID: 31973348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activated Carbon Derived from Cucumber Peel for Use as a Supercapacitor Electrode Material.
    Nazhipkyzy M; Kurmanbayeva G; Seitkazinova A; Varol EA; Li W; Dinistanova B; Issanbekova A; Mashan T
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.
    Yang C; Zhou M; Xu Q
    Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-sized Mn-doped activated carbon aerogel as electrode material for electrochemical capacitor: effect of activation conditions.
    Lee YJ; Park HW; Park S; Song IK
    J Nanosci Nanotechnol; 2012 Jul; 12(7):6058-64. PubMed ID: 22966708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capacitive behavior of activated carbons obtained from coffee husk.
    Ramirez N; Sardella F; Deiana C; Schlosser A; Müller D; Kißling PA; Klepzig LF; Bigall NC
    RSC Adv; 2020 Oct; 10(62):38097-38106. PubMed ID: 35515146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.