These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 31492294)
1. Targeted Fluorescence Imaging and Biological Effects of Peptide Conjugated Quantum Dots on Pancreatic Cancer Cells. Shi X; Shi C; Ye W; Wang L; Zhan Y; Song F; Liu F; Shi Y J Nanosci Nanotechnol; 2020 Mar; 20(3):1351-1357. PubMed ID: 31492294 [TBL] [Abstract][Full Text] [Related]
2. Effects of arginine-glycine-aspartic acid peptide-conjugated quantum dots-induced photodynamic therapy on pancreatic carcinoma in vivo. Li MM; Cao J; Yang JC; Shen YJ; Cai XL; Chen YW; Qu CY; Zhang Y; Shen F; Xu LM Int J Nanomedicine; 2017; 12():2769-2779. PubMed ID: 28435257 [TBL] [Abstract][Full Text] [Related]
3. Toxicity assessment of repeated intravenous injections of arginine-glycine-aspartic acid peptide conjugated CdSeTe/ZnS quantum dots in mice. Wang YW; Yang K; Tang H; Chen D; Bai YL Int J Nanomedicine; 2014; 9():4809-17. PubMed ID: 25378922 [TBL] [Abstract][Full Text] [Related]
4. NIR Emitting Nanoprobes Based on Cyclic RGD Motif Conjugated PbS Quantum Dots for Integrin-Targeted Optical Bioimaging. Depalo N; Corricelli M; De Paola I; Valente G; Iacobazzi RM; Altamura E; Debellis D; Comegna D; Fanizza E; Denora N; Laquintana V; Mavelli F; Striccoli M; Saviano M; Agostiano A; Del Gatto A; Zaccaro L; Curri ML ACS Appl Mater Interfaces; 2017 Dec; 9(49):43113-43126. PubMed ID: 29148709 [TBL] [Abstract][Full Text] [Related]
5. RGD-conjugated albumin nanoparticles as a novel delivery vehicle in pancreatic cancer therapy. Ji S; Xu J; Zhang B; Yao W; Xu W; Wu W; Xu Y; Wang H; Ni Q; Hou H; Yu X Cancer Biol Ther; 2012 Feb; 13(4):206-15. PubMed ID: 22354009 [TBL] [Abstract][Full Text] [Related]
6. Biodistribution and toxicity assessment of intratumorally injected arginine-glycine-aspartic acid peptide conjugated to CdSe/ZnS quantum dots in mice bearing pancreatic neoplasm. Li MM; Cao J; Yang JC; Shen YJ; Cai XL; Chen YW; Qu CY; Zhang Y; Shen F; Zhou M; Xu LM Chem Biol Interact; 2018 Aug; 291():103-110. PubMed ID: 29908985 [TBL] [Abstract][Full Text] [Related]
7. [In situ visual imaging of oral squamous cell carcinoma in mice by using near-infrared quantum dots conjugated with arginine-glycine-aspartic acid peptide fluorescent probes]. Yunlong B; Hao H; Kai Y; Hong T Hua Xi Kou Qiang Yi Xue Za Zhi; 2014 Oct; 32(5):498-503. PubMed ID: 25490831 [TBL] [Abstract][Full Text] [Related]
8. Peptide-Conjugated Quantum Dots Act as the Target Marker for Human Pancreatic Carcinoma Cells. Li SL; Yang J; Lei XF; Zhang JN; Yang HL; Li K; Xu CQ Cell Physiol Biochem; 2016; 38(3):1121-8. PubMed ID: 26963791 [TBL] [Abstract][Full Text] [Related]
9. In Vivo Cancer Dual-Targeting and Dual-Modality Imaging with Functionalized Quantum Dots. Hu K; Wang H; Tang G; Huang T; Tang X; Liang X; Yao S; Nie D J Nucl Med; 2015 Aug; 56(8):1278-84. PubMed ID: 26112023 [TBL] [Abstract][Full Text] [Related]
10. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Cai W; Chen X Nat Protoc; 2008; 3(1):89-96. PubMed ID: 18193025 [TBL] [Abstract][Full Text] [Related]
11. Multimodal molecular imaging of integrin αvβ3 for in vivo detection of pancreatic cancer. Trajkovic-Arsic M; Mohajerani P; Sarantopoulos A; Kalideris E; Steiger K; Esposito I; Ma X; Themelis G; Burton N; Michalski CW; Kleeff J; Stangl S; Beer AJ; Pohle K; Wester HJ; Schmid RM; Braren R; Ntziachristos V; Siveke JT J Nucl Med; 2014 Mar; 55(3):446-51. PubMed ID: 24549287 [TBL] [Abstract][Full Text] [Related]
12. Optical imaging of head and neck squamous cell carcinoma in vivo using arginine-glycine-aspartic acid peptide conjugated near-infrared quantum dots. Huang H; Bai YL; Yang K; Tang H; Wang YW Onco Targets Ther; 2013; 6():1779-87. PubMed ID: 24324343 [TBL] [Abstract][Full Text] [Related]
13. Peptide-mediated targeting of Quantum Dots in a 3D model of head and neck cancer. Dirheimer L; Pons T; François A; Lamy L; Marchal F; Dolivet G; Cortese S; Bezdetnaya L Photodiagnosis Photodyn Ther; 2024 Oct; 49():104337. PubMed ID: 39332607 [TBL] [Abstract][Full Text] [Related]
14. Ligands for mapping alphavbeta3-integrin expression in vivo. Schottelius M; Laufer B; Kessler H; Wester HJ Acc Chem Res; 2009 Jul; 42(7):969-80. PubMed ID: 19489579 [TBL] [Abstract][Full Text] [Related]
15. RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells. Shan D; Li J; Cai P; Prasad P; Liu F; Rauth AM; Wu XY Drug Deliv Transl Res; 2015 Feb; 5(1):15-26. PubMed ID: 25787336 [TBL] [Abstract][Full Text] [Related]
16. In vitro derby imaging of cancer biomarkers using quantum dots. Ko MH; Kim S; Kang WJ; Lee JH; Kang H; Moon SH; Hwang DW; Ko HY; Lee DS Small; 2009 May; 5(10):1207-12. PubMed ID: 19235198 [TBL] [Abstract][Full Text] [Related]
17. Biophotonics and biotechnology in pancreatic cancer: cyclic RGD-peptide-conjugated type II quantum dots for in vivo imaging. Yong KT Pancreatology; 2010; 10(5):553-64. PubMed ID: 20975319 [TBL] [Abstract][Full Text] [Related]
18. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Liu S Mol Pharm; 2006; 3(5):472-87. PubMed ID: 17009846 [TBL] [Abstract][Full Text] [Related]
19. In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Gao J; Chen K; Xie R; Xie J; Yan Y; Cheng Z; Peng X; Chen X Bioconjug Chem; 2010 Apr; 21(4):604-9. PubMed ID: 20369817 [TBL] [Abstract][Full Text] [Related]