BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31492405)

  • 21. Conditional Generative Adversarial Networks for Metal Artifact Reduction in CT Images of the Ear.
    Wang J; Zhao Y; Noble JH; Dawant BM
    Med Image Comput Comput Assist Interv; 2018 Sep; 11070():3-11. PubMed ID: 30693351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial Intelligence in Diagnostic Radiology: Where Do We Stand, Challenges, and Opportunities.
    Moawad AW; Fuentes DT; ElBanan MG; Shalaby AS; Guccione J; Kamel S; Jensen CT; Elsayes KM
    J Comput Assist Tomogr; 2022 Jan-Feb 01; 46(1):78-90. PubMed ID: 35027520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medical Image Synthesis via Deep Learning.
    Yu B; Wang Y; Wang L; Shen D; Zhou L
    Adv Exp Med Biol; 2020; 1213():23-44. PubMed ID: 32030661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal artifact reduction on cervical CT images by deep residual learning.
    Huang X; Wang J; Tang F; Zhong T; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Democratizing AI.
    Allen B; Agarwal S; Kalpathy-Cramer J; Dreyer K
    J Am Coll Radiol; 2019 Jul; 16(7):961-963. PubMed ID: 31272590
    [No Abstract]   [Full Text] [Related]  

  • 26. Exposure.
    Pediatr Radiol; 2019 Jul; 49(8):1104-1105. PubMed ID: 31254020
    [No Abstract]   [Full Text] [Related]  

  • 27. Generative Adversarial Networks for Noise Reduction in Low-Dose CT.
    Wolterink JM; Leiner T; Viergever MA; Isgum I
    IEEE Trans Med Imaging; 2017 Dec; 36(12):2536-2545. PubMed ID: 28574346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cascaded Learning with Generative Adversarial Networks for Low Dose CT Denoising.
    Ataei S; Babyn P; Ahmadian A; Alirezaie J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3053-3056. PubMed ID: 34891887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information.
    Tang C; Li J; Wang L; Li Z; Jiang L; Cai A; Zhang W; Liang N; Li L; Yan B
    Comput Math Methods Med; 2019; 2019():8639825. PubMed ID: 31885686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CBCT correction using a cycle-consistent generative adversarial network and unpaired training to enable photon and proton dose calculation.
    Kurz C; Maspero M; Savenije MHF; Landry G; Kamp F; Pinto M; Li M; Parodi K; Belka C; van den Berg CAT
    Phys Med Biol; 2019 Nov; 64(22):225004. PubMed ID: 31610527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MLNAN: Multi-level noise-aware network for low-dose CT imaging implemented with constrained cycle Wasserstein generative adversarial networks.
    Huang Z; Li W; Wang Y; Liu Z; Zhang Q; Jin Y; Wu R; Quan G; Liang D; Hu Z; Zhang N
    Artif Intell Med; 2023 Sep; 143():102609. PubMed ID: 37673577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of High-resolution Lung Computed Tomography Images using Generative Adversarial Networks.
    Hsieh KY; Tsai HC; Chen GY
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2400-2403. PubMed ID: 33018490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning from adversarial medical images for X-ray breast mass segmentation.
    Shen T; Gou C; Wang FY; He Z; Chen W
    Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.
    Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y
    Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.
    Yang G; Yu S; Dong H; Slabaugh G; Dragotti PL; Ye X; Liu F; Arridge S; Keegan J; Guo Y; Firmin D; Keegan J; Slabaugh G; Arridge S; Ye X; Guo Y; Yu S; Liu F; Firmin D; Dragotti PL; Yang G; Dong H
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1310-1321. PubMed ID: 29870361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Independent brain
    Armanious K; Küstner T; Reimold M; Nikolaou K; La Fougère C; Yang B; Gatidis S
    Hell J Nucl Med; 2019; 22(3):179-186. PubMed ID: 31587027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generative adversarial network in medical imaging: A review.
    Yi X; Walia E; Babyn P
    Med Image Anal; 2019 Dec; 58():101552. PubMed ID: 31521965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico.
    Kadurin A; Nikolenko S; Khrabrov K; Aliper A; Zhavoronkov A
    Mol Pharm; 2017 Sep; 14(9):3098-3104. PubMed ID: 28703000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Narrative review of generative adversarial networks in medical and molecular imaging.
    Koshino K; Werner RA; Pomper MG; Bundschuh RA; Toriumi F; Higuchi T; Rowe SP
    Ann Transl Med; 2021 May; 9(9):821. PubMed ID: 34268434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application.
    La Salvia M; Torti E; Leon R; Fabelo H; Ortega S; Martinez-Vega B; Callico GM; Leporati F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.