These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31492405)

  • 61. A modality conversion approach to MV-DRs and KV-DRRs registration using information bottlenecked conditional generative adversarial network.
    Liu C; Lu Z; Ma L; Wang L; Jin X; Si W
    Med Phys; 2019 Oct; 46(10):4575-4587. PubMed ID: 31420963
    [TBL] [Abstract][Full Text] [Related]  

  • 62. MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach.
    Kazemifar S; McGuire S; Timmerman R; Wardak Z; Nguyen D; Park Y; Jiang S; Owrangi A
    Radiother Oncol; 2019 Jul; 136():56-63. PubMed ID: 31015130
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Basics of iterative reconstruction methods in computed tomography: A vendor-independent overview.
    Stiller W
    Eur J Radiol; 2018 Dec; 109():147-154. PubMed ID: 30527298
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Applications of Artificial Intelligence in Musculoskeletal Imaging: From the Request to the Report.
    Gorelik N; Gyftopoulos S
    Can Assoc Radiol J; 2021 Feb; 72(1):45-59. PubMed ID: 32809857
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Deep learning-based digital subtraction angiography image generation.
    Gao Y; Song Y; Yin X; Wu W; Zhang L; Chen Y; Shi W
    Int J Comput Assist Radiol Surg; 2019 Oct; 14(10):1775-1784. PubMed ID: 31367806
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Using a deep neural network for four-dimensional CT artifact reduction in image-guided radiotherapy.
    Mori S; Hirai R; Sakata Y
    Phys Med; 2019 Sep; 65():67-75. PubMed ID: 31430590
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Changing the paradigm for diagnostic MRI in pediatrics: Don't hold your breath.
    Masaracchia MM; Tsapakos MJ; McNulty NJ; Beach ML
    Paediatr Anaesth; 2017 Sep; 27(9):880-884. PubMed ID: 28504359
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Digital radiography image denoising using a generative adversarial network.
    Sun Y; Liu X; Cong P; Li L; Zhao Z
    J Xray Sci Technol; 2018; 26(4):523-534. PubMed ID: 29889095
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Protection of patients in diagnostic and interventional medical imaging: collaboration is the key.
    Applegate KE
    Health Phys; 2015 Feb; 108(2):221-3. PubMed ID: 25551505
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Generative adversarial networks for reconstructing natural images from brain activity.
    Seeliger K; Güçlü U; Ambrogioni L; Güçlütürk Y; van Gerven MAJ
    Neuroimage; 2018 Nov; 181():775-785. PubMed ID: 30031932
    [TBL] [Abstract][Full Text] [Related]  

  • 71. MRI-based computed tomography metal artifact correction method for improving proton range calculation accuracy.
    Park PC; Schreibmann E; Roper J; Elder E; Crocker I; Fox T; Zhu XR; Dong L; Dhabaan A
    Int J Radiat Oncol Biol Phys; 2015 Mar; 91(4):849-56. PubMed ID: 25752400
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hybrid imaging for pancreatic malignancy: clinical applications, merits, limitations, and pitfalls.
    Jha P; Bijan B; Melendres G; Shelton DK
    Clin Nucl Med; 2015 Mar; 40(3):206-13. PubMed ID: 25608151
    [TBL] [Abstract][Full Text] [Related]  

  • 73. LV-GAN: A deep learning approach for limited-view optoacoustic imaging based on hybrid datasets.
    Lu T; Chen T; Gao F; Sun B; Ntziachristos V; Li J
    J Biophotonics; 2021 Feb; 14(2):e202000325. PubMed ID: 33098215
    [TBL] [Abstract][Full Text] [Related]  

  • 74. What Does DALL-E 2 Know About Radiology?
    Adams LC; Busch F; Truhn D; Makowski MR; Aerts HJWL; Bressem KK
    J Med Internet Res; 2023 Mar; 25():e43110. PubMed ID: 36927634
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging.
    Galbusera F; Bassani T; Casaroli G; Gitto S; Zanchetta E; Costa F; Sconfienza LM
    Eur Radiol Exp; 2018 Oct; 2(1):29. PubMed ID: 30377873
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Deep Encoder-Decoder Adversarial Reconstruction(DEAR) Network for 3D CT from Few-View Data.
    Xie H; Shan H; Wang G
    Bioengineering (Basel); 2019 Dec; 6(4):. PubMed ID: 31835430
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Generating ultrasonic images indistinguishable from real images using Generative Adversarial Networks.
    Posilović L; Medak D; Subašić M; Budimir M; Lončarić S
    Ultrasonics; 2022 Feb; 119():106610. PubMed ID: 34735930
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Diagnostic radiology dosimetry: Status and trends.
    Rivera-Montalvo T
    Appl Radiat Isot; 2016 Nov; 117():74-81. PubMed ID: 26994754
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Realistic generation of diffusion-weighted magnetic resonance brain images with deep generative models.
    Hirte AU; Platscher M; Joyce T; Heit JJ; Tranvinh E; Federau C
    Magn Reson Imaging; 2021 Sep; 81():60-66. PubMed ID: 34116133
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Deep Learning of Cancer Stem Cell Morphology Using Conditional Generative Adversarial Networks.
    Aida S; Okugawa J; Fujisaka S; Kasai T; Kameda H; Sugiyama T
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32575396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.