BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31492534)

  • 1. Phase Separation-Mediated TARP/MAGUK Complex Condensation and AMPA Receptor Synaptic Transmission.
    Zeng M; Díaz-Alonso J; Ye F; Chen X; Xu J; Ji Z; Nicoll RA; Zhang M
    Neuron; 2019 Nov; 104(3):529-543.e6. PubMed ID: 31492534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAP102 regulates synaptic AMPAR function through a CNIH-2-dependent mechanism.
    Liu M; Shi R; Hwang H; Han KS; Wong MH; Ren X; Lewis LD; Brown EN; Xu W
    J Neurophysiol; 2018 Oct; 120(4):1578-1586. PubMed ID: 30067114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy.
    Twomey EC; Yelshanskaya MV; Grassucci RA; Frank J; Sobolevsky AI
    Science; 2016 Jul; 353(6294):83-6. PubMed ID: 27365450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, gamma-5.
    Soto D; Coombs ID; Renzi M; Zonouzi M; Farrant M; Cull-Candy SG
    Nat Neurosci; 2009 Mar; 12(3):277-85. PubMed ID: 19234459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α-Actinin Anchors PSD-95 at Postsynaptic Sites.
    Matt L; Kim K; Hergarden AC; Patriarchi T; Malik ZA; Park DK; Chowdhury D; Buonarati OR; Henderson PB; Gökçek Saraç Ç; Zhang Y; Mohapatra D; Horne MC; Ames JB; Hell JW
    Neuron; 2018 Mar; 97(5):1094-1109.e9. PubMed ID: 29429936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SynDIG1 regulation of synaptic AMPA receptor targeting.
    Díaz E
    Commun Integr Biol; 2010 Jul; 3(4):347-9. PubMed ID: 20798822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced AMPAR-dependent synaptic transmission by S-nitrosylation in the vmPFC contributes to chronic inflammatory pain-induced persistent anxiety in mice.
    Chen ZJ; Su CW; Xiong S; Li T; Liang HY; Lin YH; Chang L; Wu HY; Li F; Zhu DY; Luo CX
    Acta Pharmacol Sin; 2023 May; 44(5):954-968. PubMed ID: 36460834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demixing is a default process for biological condensates formed via phase separation.
    Zhu S; Shen Z; Wu X; Han W; Jia B; Lu W; Zhang M
    Science; 2024 May; 384(6698):920-928. PubMed ID: 38781377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure Sensitivity of SynGAP/PSD-95 Condensates as a Model for Postsynaptic Densities and Its Biophysical and Neurological Ramifications.
    Cinar H; Oliva R; Lin YH; Chen X; Zhang M; Chan HS; Winter R
    Chemistry; 2020 Aug; 26(48):11024-11031. PubMed ID: 31910298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fuzzy supertertiary interactions within PSD-95 enable ligand binding.
    Hamilton GL; Saikia N; Basak S; Welcome FS; Wu F; Kubiak J; Zhang C; Hao Y; Seidel CAM; Ding F; Sanabria H; Bowen ME
    Elife; 2022 Sep; 11():. PubMed ID: 36069777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase separation at the synapse.
    Chen X; Wu X; Wu H; Zhang M
    Nat Neurosci; 2020 Mar; 23(3):301-310. PubMed ID: 32015539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-Liquid Phase Separation in Neuronal Development and Synaptic Signaling.
    Wu X; Cai Q; Feng Z; Zhang M
    Dev Cell; 2020 Oct; 55(1):18-29. PubMed ID: 32726576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term potentiation is independent of the C-tail of the GluA1 AMPA receptor subunit.
    Díaz-Alonso J; Morishita W; Incontro S; Simms J; Holtzman J; Gill M; Mucke L; Malenka RC; Nicoll RA
    Elife; 2020 Aug; 9():. PubMed ID: 32831170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions.
    Beutel O; Maraspini R; Pombo-García K; Martin-Lemaitre C; Honigmann A
    Cell; 2019 Oct; 179(4):923-936.e11. PubMed ID: 31675499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tight Junction Structure and Function Revisited.
    Otani T; Furuse M
    Trends Cell Biol; 2020 Oct; 30(10):805-817. PubMed ID: 32891490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation.
    Cai Q; Zeng M; Wu X; Wu H; Zhan Y; Tian R; Zhang M
    Cell Res; 2021 Jan; 31(1):37-51. PubMed ID: 33235361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicle Tethering on the Surface of Phase-Separated Active Zone Condensates.
    Wu X; Ganzella M; Zhou J; Zhu S; Jahn R; Zhang M
    Mol Cell; 2021 Jan; 81(1):13-24.e7. PubMed ID: 33202250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GIT/PIX Condensates Are Modular and Ideal for Distinct Compartmentalized Cell Signaling.
    Zhu J; Zhou Q; Xia Y; Lin L; Li J; Peng M; Zhang R; Zhang M
    Mol Cell; 2020 Sep; 79(5):782-796.e6. PubMed ID: 32780989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gephyrin-mediated formation of inhibitory postsynaptic density sheet via phase separation.
    Bai G; Wang Y; Zhang M
    Cell Res; 2021 Mar; 31(3):312-325. PubMed ID: 33139925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses.
    Goncalves J; Bartol TM; Camus C; Levet F; Menegolla AP; Sejnowski TJ; Sibarita JB; Vivaudou M; Choquet D; Hosy E
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14503-14511. PubMed ID: 32513712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.