These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

642 related articles for article (PubMed ID: 31492945)

  • 21. Insomnia Disorder and Brain's Default-Mode Network.
    Marques DR; Gomes AA; Caetano G; Castelo-Branco M
    Curr Neurol Neurosci Rep; 2018 Jun; 18(8):45. PubMed ID: 29886515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional connectivity of default mode network components: correlation, anticorrelation, and causality.
    Uddin LQ; Kelly AM; Biswal BB; Castellanos FX; Milham MP
    Hum Brain Mapp; 2009 Feb; 30(2):625-37. PubMed ID: 18219617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks.
    Braga RM; DiNicola LM; Becker HC; Buckner RL
    J Neurophysiol; 2020 Nov; 124(5):1415-1448. PubMed ID: 32965153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects.
    Gao W; Zhu H; Giovanello KS; Smith JK; Shen D; Gilmore JH; Lin W
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6790-5. PubMed ID: 19351894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition.
    Spreng RN; Stevens WD; Chamberlain JP; Gilmore AW; Schacter DL
    Neuroimage; 2010 Oct; 53(1):303-17. PubMed ID: 20600998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Putative Multiple-Demand System in the Macaque Brain.
    Mitchell DJ; Bell AH; Buckley MJ; Mitchell AS; Sallet J; Duncan J
    J Neurosci; 2016 Aug; 36(33):8574-85. PubMed ID: 27535906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The parcellation-based connectome: limitations and extensions.
    de Reus MA; van den Heuvel MP
    Neuroimage; 2013 Oct; 80():397-404. PubMed ID: 23558097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
    Huang X; Xu K; Chu C; Jiang T; Yu S
    J Neurosci; 2017 Oct; 37(43):10481-10497. PubMed ID: 28951453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salience network engagement with the detection of morally laden information.
    Sevinc G; Gurvit H; Spreng RN
    Soc Cogn Affect Neurosci; 2017 Jul; 12(7):1118-1127. PubMed ID: 28338944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Connectomic Atlas of the Human Cerebrum-Chapter 18: The Connectional Anatomy of Human Brain Networks.
    Briggs RG; Conner AK; Baker CM; Burks JD; Glenn CA; Sali G; Battiste JD; O'Donoghue DL; Sughrue ME
    Oper Neurosurg (Hagerstown); 2018 Dec; 15(suppl_1):S470-S480. PubMed ID: 30260432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Driving and driven architectures of directed small-world human brain functional networks.
    Yan C; He Y
    PLoS One; 2011; 6(8):e23460. PubMed ID: 21858129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in structural and functional connectivity among resting-state networks across the human lifespan.
    Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O
    Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic functional architecture predicts electrically evoked responses in the human brain.
    Keller CJ; Bickel S; Entz L; Ulbert I; Milham MP; Kelly C; Mehta AD
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10308-13. PubMed ID: 21636787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directed connectivity of brain default networks in resting state using GCA and motif.
    Jiao Z; Wang H; Ma K; Zou L; Xiang J
    Front Biosci (Landmark Ed); 2017 Jun; 22(10):1634-1643. PubMed ID: 28410136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multimodal functional network connectivity: an EEG-fMRI fusion in network space.
    Lei X; Ostwald D; Hu J; Qiu C; Porcaro C; Bagshaw AP; Yao D
    PLoS One; 2011; 6(9):e24642. PubMed ID: 21961040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imaging and neural modelling in episodic and working memory processes.
    Krause JB; Taylor JG; Schmidt D; Hautzel H; Mottaghy FM; Müller-Gärtner HW
    Neural Netw; 2000; 13(8-9):847-59. PubMed ID: 11156196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resting state networks' corticotopy: the dual intertwined rings architecture.
    Mesmoudi S; Perlbarg V; Rudrauf D; Messe A; Pinsard B; Hasboun D; Cioli C; Marrelec G; Toro R; Benali H; Burnod Y
    PLoS One; 2013; 8(7):e67444. PubMed ID: 23894288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The organization of the human cerebral cortex estimated by intrinsic functional connectivity.
    Yeo BT; Krienen FM; Sepulcre J; Sabuncu MR; Lashkari D; Hollinshead M; Roffman JL; Smoller JW; Zöllei L; Polimeni JR; Fischl B; Liu H; Buckner RL
    J Neurophysiol; 2011 Sep; 106(3):1125-65. PubMed ID: 21653723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diagnosing the Neural Circuitry of Reading.
    Wandell BA; Le RK
    Neuron; 2017 Oct; 96(2):298-311. PubMed ID: 29024656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic resonance imaging of mouse brain networks plasticity following motor learning.
    Badea A; Ng KL; Anderson RJ; Zhang J; Miller MI; O'Brien RJ
    PLoS One; 2019; 14(5):e0216596. PubMed ID: 31067263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.