BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 31493234)

  • 1. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead.
    Dodds JN; Baker ES
    J Am Soc Mass Spectrom; 2019 Nov; 30(11):2185-2195. PubMed ID: 31493234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted glucocorticoid analysis using ion mobility-mass spectrometry (IM-MS).
    Neal SP; Wilson KM; Velosa DC; Chouinard CD
    J Mass Spectrom Adv Clin Lab; 2022 Apr; 24():50-56. PubMed ID: 35469203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Isotopologue Workflows and Simultaneous Multidimensional Separations to Detect, Identify, and Validate Metabolites in Untargeted Analyses.
    Dodds JN; Wang L; Patti GJ; Baker ES
    Anal Chem; 2022 Feb; 94(5):2527-2535. PubMed ID: 35089687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid analysis by ion mobility spectrometry combined with mass spectrometry: A brief update with a perspective on applications in the clinical laboratory.
    Dubland JA
    J Mass Spectrom Adv Clin Lab; 2022 Jan; 23():7-13. PubMed ID: 34988541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent applications of ion mobility spectrometry in natural product research.
    Masike K; Stander MA; de Villiers A
    J Pharm Biomed Anal; 2021 Feb; 195():113846. PubMed ID: 33422832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AutoCCS: automated collision cross-section calculation software for ion mobility spectrometry-mass spectrometry.
    Lee JY; Bilbao A; Conant CR; Bloodsworth KJ; Orton DJ; Zhou M; Wilson JW; Zheng X; Webb IK; Li A; Hixson KK; Fjeldsted JC; Ibrahim YM; Payne SH; Jansson C; Smith RD; Metz TO
    Bioinformatics; 2021 Nov; 37(22):4193-4201. PubMed ID: 34145874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A re-calibration procedure for interoperable lipid collision cross section values measured by traveling wave ion mobility spectrometry.
    George AC; Schmitz-Afonso I; Marie V; Colsch B; Fenaille F; Afonso C; Loutelier-Bourhis C
    Anal Chim Acta; 2022 Sep; 1226():340236. PubMed ID: 36068052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplatform comparison between three ion mobility techniques for human plasma lipid collision cross sections.
    George AC; Schmitz I; Rouvière F; Alves S; Colsch B; Heinisch S; Afonso C; Fenaille F; Loutelier-Bourhis C
    Anal Chim Acta; 2024 May; 1304():342535. PubMed ID: 38637036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: A brief review and perspective.
    Rivera ES; Djambazova KV; Neumann EK; Caprioli RM; Spraggins JM
    J Mass Spectrom; 2020 Dec; 55(12):e4614. PubMed ID: 32955134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry.
    Paglia G; Astarita G
    Nat Protoc; 2017 Apr; 12(4):797-813. PubMed ID: 28301461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS).
    Dodds JN; Hopkins ZR; Knappe DRU; Baker ES
    Anal Chem; 2020 Mar; 92(6):4427-4435. PubMed ID: 32011866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating ion mobility into comprehensive multidimensional metabolomics workflows: critical considerations.
    May JC; McLean JA
    Metabolomics; 2022 Dec; 18(12):104. PubMed ID: 36472678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion mobility-mass spectrometry.
    Kanu AB; Dwivedi P; Tam M; Matz L; Hill HH
    J Mass Spectrom; 2008 Jan; 43(1):1-22. PubMed ID: 18200615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of ion-mobility mass spectrometry for lipid analysis.
    Paglia G; Kliman M; Claude E; Geromanos S; Astarita G
    Anal Bioanal Chem; 2015 Jul; 407(17):4995-5007. PubMed ID: 25893801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of ion mobility-mass spectrometry for both targeted and non-targeted analysis of phase II steroid metabolites in urine.
    Hernández-Mesa M; Monteau F; Le Bizec B; Dervilly-Pinel G
    Anal Chim Acta X; 2019 Mar; 1():100006. PubMed ID: 33117973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary methods for structural assignment of isomeric candidate structures in non-target liquid chromatography ion mobility high-resolution mass spectrometric analysis.
    Akhlaqi M; Wang WC; Möckel C; Kruve A
    Anal Bioanal Chem; 2023 Sep; 415(21):5247-5259. PubMed ID: 37452839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.
    Baglai A; Gargano AFG; Jordens J; Mengerink Y; Honing M; van der Wal S; Schoenmakers PJ
    J Chromatogr A; 2017 Dec; 1530():90-103. PubMed ID: 29146423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General Method to Obtain Collision Cross-Section Values in Multipass High-Resolution Cyclic Ion Mobility Separations.
    Habibi SC; Nagy G
    Anal Chem; 2023 May; 95(20):8028-8035. PubMed ID: 37163363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving glycan isomeric separation via metal ion incorporation for drift tube ion mobility-mass spectrometry.
    Xie C; Wu Q; Zhang S; Wang C; Gao W; Yu J; Tang K
    Talanta; 2020 May; 211():120719. PubMed ID: 32070621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing biological analyses with three dimensional field asymmetric ion mobility, low field drift tube ion mobility and mass spectrometry (μFAIMS/IMS-MS) separations.
    Zhang X; Ibrahim YM; Chen TC; Kyle JE; Norheim RV; Monroe ME; Smith RD; Baker ES
    Analyst; 2015 Oct; 140(20):6955-63. PubMed ID: 26140287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.