BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 31493262)

  • 1. A transcriptome analysis uncovers Panax notoginseng resistance to Fusarium solani induced by methyl jasmonate.
    Liu D; Zhao Q; Cui X; Chen R; Li X; Qiu B; Ge F
    Genes Genomics; 2019 Dec; 41(12):1383-1396. PubMed ID: 31493262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An MYB Transcription Factor Modulates
    Qiu B; Chen H; Zheng L; Su L; Cui X; Ge F; Liu D
    Phytopathology; 2022 Jun; 112(6):1323-1334. PubMed ID: 34844417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Panax notoginseng transcription factor WRKY15 modulates resistance to Fusarium solani by up-regulating osmotin-like protein expression and inducing JA/SA signaling pathways.
    Su L; Zheng L; Wang H; Qu Y; Ge F; Liu D
    BMC Plant Biol; 2023 Jul; 23(1):362. PubMed ID: 37460949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotin-Like Protein Gene from
    Zhao Q; Qiu B; Li S; Zhang Y; Cui X; Liu D
    Phytopathology; 2020 Aug; 110(8):1419-1427. PubMed ID: 32301678
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Zheng L; Qiu B; Su L; Wang H; Cui X; Ge F; Liu D
    Front Plant Sci; 2022; 13():930644. PubMed ID: 35909719
    [No Abstract]   [Full Text] [Related]  

  • 6. De novo characterization of Larix gmelinii (Rupr.) Rupr. transcriptome and analysis of its gene expression induced by jasmonates.
    Men L; Yan S; Liu G
    BMC Genomics; 2013 Aug; 14():548. PubMed ID: 23941306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development of the devices for synthetic biology of triterpene saponins at an early stage: cloning and expression profiling of squalene epoxidase genes in panax notoginseng].
    Niu YY; Zhu XX; Luo HM; Sun C; Huang LF; Chen SL
    Yao Xue Xue Bao; 2013 Feb; 48(2):211-8. PubMed ID: 23672017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.
    Król P; Igielski R; Pollmann S; Kępczyńska E
    J Plant Physiol; 2015 May; 179():122-32. PubMed ID: 25867625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate.
    Liu H; Wu W; Hou K; Chen J; Zhao Z
    Mol Genet Genomics; 2016 Feb; 291(1):337-48. PubMed ID: 26342927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling methyl jasmonate-responsive transcriptome for understanding induced systemic resistance in whitebark pine (Pinus albicaulis).
    Liu JJ; Williams H; Li XR; Schoettle AW; Sniezko RA; Murray M; Zamany A; Roke G; Chen H
    Plant Mol Biol; 2017 Nov; 95(4-5):359-374. PubMed ID: 28861810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves.
    Shi J; Ma C; Qi D; Lv H; Yang T; Peng Q; Chen Z; Lin Z
    BMC Plant Biol; 2015 Sep; 15():233. PubMed ID: 26420557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis.
    Lin W; Huang W; Ning S; Gong X; Ye Q; Wei D
    PLoS One; 2019; 14(3):e0212863. PubMed ID: 30865659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional profiling of methyl jasmonate-induced defense responses in bilberry (Vaccinium myrtillus L.).
    Benevenuto RF; Seldal T; Hegland SJ; Rodriguez-Saona C; Kawash J; Polashock J
    BMC Plant Biol; 2019 Feb; 19(1):70. PubMed ID: 30755189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal transcriptome changes induced by methyl jasmonate in Salvia sclarea.
    Hao da C; Chen SL; Osbourn A; Kontogianni VG; Liu LW; Jordán MJ
    Gene; 2015 Mar; 558(1):41-53. PubMed ID: 25536164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proline-rich protein PRPL1 enhances Panax notoginseng defence against Fusarium solani by regulating reactive oxygen species balance and strengthening the cell wall barrier.
    Su L; Li W; Chen X; Wang P; Liu D
    Plant Cell Environ; 2024 Jul; 47(7):2377-2395. PubMed ID: 38516721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax Quinquefolium adventitious root.
    Wang J; Li J; Li J; Liu S; Wu X; Li J; Gao W
    Sci Rep; 2016 Nov; 6():37263. PubMed ID: 27876840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants.
    Oliveira MB; Junior ML; Grossi-de-Sá MF; Petrofeza S
    J Plant Physiol; 2015 Jun; 182():13-22. PubMed ID: 26037694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cloning and expression analysis of a chitinase gene PnCHI1 from Panax notoginseng].
    Xu ZN; Pu LM; Qu Y; Yang Y; Bai ZW; Guan RP; Zhang Q; Cui XM; Liu DQ
    Zhongguo Zhong Yao Za Zhi; 2016 Jun; 41(11):2036-2043. PubMed ID: 28901098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive genomic analysis of Burkholderia arboris PN-1 reveals its biocontrol potential against Fusarium solani-induced root rot in Panax notoginseng.
    Yang Y; Wang H; Tu J; Li Y; Guan H
    Curr Genet; 2024 Mar; 70(1):4. PubMed ID: 38555312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomics comparison reveals the diversity of ethylene and methyl-jasmonate in roles of TIA metabolism in Catharanthus roseus.
    Pan YJ; Lin YC; Yu BF; Zu YG; Yu F; Tang ZH
    BMC Genomics; 2018 Jul; 19(1):508. PubMed ID: 29966514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.