BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31493454)

  • 1. Effects of Chlorella vulgaris polysaccharides accumulation on growth characteristics of Trachemys scripta elegans.
    Gui J; Tong W; Huang S; Liang X; Fang Z; Wang W; Zhang Y
    Int J Biol Macromol; 2019 Dec; 141():1304-1313. PubMed ID: 31493454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo.
    Yu M; Chen M; Gui J; Huang S; Liu Y; Shentu H; He J; Fang Z; Wang W; Zhang Y
    Int J Biol Macromol; 2019 Sep; 137():139-150. PubMed ID: 31260772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical characterization and antioxidant effects of green microalga Chlorella pyrenoidosa polysaccharide by regulation of microRNAs and gut microbiota in Caenorhabditis elegans.
    Wan X; Li X; Liu D; Gao X; Chen Y; Chen Z; Fu C; Lin L; Liu B; Zhao C
    Int J Biol Macromol; 2021 Jan; 168():152-162. PubMed ID: 33301848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a Caenorhabditis elegans model.
    Fang Z; Chen Y; Wang G; Feng T; Shen M; Xiao B; Gu J; Wang W; Li J; Zhang Y
    Food Funct; 2019 Sep; 10(9):5531-5543. PubMed ID: 31418439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant activity in vitro and in vivo of the polysaccharides from different varieties of Auricularia auricula.
    Xu S; Zhang Y; Jiang K
    Food Funct; 2016 Sep; 7(9):3868-79. PubMed ID: 27506886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris.
    Guo J; Peng J; Lei Y; Kanerva M; Li Q; Song J; Guo J; Sun H
    Aquat Toxicol; 2020 Feb; 219():105376. PubMed ID: 31838304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of the Enzymatic Hydrolysates from Chlorella vulgaris Protein and Assessment of Their Antioxidant Potential Using Caenorhabditis elegans.
    Zhang Y; Jiang W; Hao X; Tan J; Wang W; Yu M; Zhang G; Zhang Y
    Mol Biotechnol; 2021 Nov; 63(11):1040-1048. PubMed ID: 34213689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radical-mediated extraction of polysaccharides from Gelidium amansii and their modulation on abnormal glycometabolism in Caenorhabditis elegans.
    Tang Y; Liu J; Yang J; Xu Y; Sun Z; Tang H; Yang Y; Xuan J; Zhang Y
    Int J Biol Macromol; 2023 Dec; 252():126402. PubMed ID: 37597639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans.
    Feng S; Cheng H; Xu Z; Shen S; Yuan M; Liu J; Ding C
    Int J Biol Macromol; 2015 Nov; 81():188-94. PubMed ID: 26234580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction, characterization and antioxidant activity of mycelial polysaccharides from Paecilomyces hepiali HN1.
    Wu Z; Zhang M; Xie M; Dai Z; Wang X; Hu B; Ye H; Zeng X
    Carbohydr Polym; 2016 Feb; 137():541-548. PubMed ID: 26686161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant and neuroprotective effects of Dictyophora indusiata polysaccharide in Caenorhabditis elegans.
    Zhang J; Shi R; Li H; Xiang Y; Xiao L; Hu M; Ma F; Ma CW; Huang Z
    J Ethnopharmacol; 2016 Nov; 192():413-422. PubMed ID: 27647012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative Damage and Cytotoxicity of Perfluorooctane Sulfonate on Chlorella vulgaris.
    Xu D; Chen X; Shao B
    Bull Environ Contam Toxicol; 2017 Jan; 98(1):127-132. PubMed ID: 27858089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids.
    Chen S; Wang L; Feng W; Yuan M; Li J; Xu H; Zheng X; Zhang W
    Sci Rep; 2020 May; 10(1):8243. PubMed ID: 32427937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of dietary Chlorella vulgaris inclusion on goat's milk chemical composition, fatty acids profile and enzymes activities related to oxidation.
    Tsiplakou E; Abdullah MAM; Mavrommatis A; Chatzikonstantinou M; Skliros D; Sotirakoglou K; Flemetakis E; Labrou NE; Zervas G
    J Anim Physiol Anim Nutr (Berl); 2018 Feb; 102(1):142-151. PubMed ID: 28447361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris.
    Fu D; Zhang Q; Fan Z; Qi H; Wang Z; Peng L
    Aquat Toxicol; 2019 Nov; 216():105319. PubMed ID: 31586885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the effects of Chlorella vulgaris supplementation on the modulation of oxidative stress in apparently healthy smokers.
    Panahi Y; Mostafazadeh B; Abrishami A; Saadat A; Beiraghdar F; Tavana S; Pishgoo B; Parvin S; Sahebkar A
    Clin Lab; 2013; 59(5-6):579-87. PubMed ID: 23865357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing dual roles of g-C
    Feng Q; Sun Y; Li A; Lin X; Lu T; Ding D; Shi M; Sun Y; Yuan Y
    J Hazard Mater; 2022 Feb; 424(Pt C):127639. PubMed ID: 34750001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.
    Kim KH; Choi IS; Kim HM; Wi SG; Bae HJ
    Bioresour Technol; 2014 Feb; 153():47-54. PubMed ID: 24333701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions.
    Choix FJ; de-Bashan LE; Bashan Y
    Enzyme Microb Technol; 2012 Oct; 51(5):300-9. PubMed ID: 22975129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two novel polysaccharides from the torus of Saussurea laniceps protect against AAPH-induced oxidative damage in human erythrocytes.
    Chen W; Ma J; Gong F; Xi H; Zhan Q; Li X; Wei F; Wu H; Lai F
    Carbohydr Polym; 2018 Nov; 200():446-455. PubMed ID: 30177186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.