These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31493690)

  • 1. Microscopical Studies on Ministeria vibrans Tong, 1997 (Filasterea) Highlight the Cytoskeletal Structure of the Common Ancestor of Filasterea, Metazoa and Choanoflagellata.
    Mylnikov AP; Tikhonenkov DV; Karpov SA; Wylezich C
    Protist; 2019 Aug; 170(4):385-396. PubMed ID: 31493690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetid structure in Choanocytes of Sponges (Heteroscleromorpha): Toward the ancestral Kinetid of Demospongiae.
    Pozdnyakov IR; Karpov SA
    J Morphol; 2016 Jul; 277(7):925-34. PubMed ID: 27091517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multigene phylogeny of choanozoa and the origin of animals.
    Shalchian-Tabrizi K; Minge MA; Espelund M; Orr R; Ruden T; Jakobsen KS; Cavalier-Smith T
    PLoS One; 2008 May; 3(5):e2098. PubMed ID: 18461162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases.
    Suga H; Dacre M; de Mendoza A; Shalchian-Tabrizi K; Manning G; Ruiz-Trillo I
    Sci Signal; 2012 May; 5(222):ra35. PubMed ID: 22550341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts.
    Paps J; Medina-Chacón LA; Marshall W; Suga H; Ruiz-Trillo I
    Protist; 2013 Jan; 164(1):2-12. PubMed ID: 23083534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protist kinetids: structural conservatism, kinetid structure, and ancestral states.
    Lynn DH; Small EB
    Biosystems; 1981; 14(3-4):377-85. PubMed ID: 7199951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flagellar apparatus structure of choanoflagellates.
    Karpov SA
    Cilia; 2016; 5():11. PubMed ID: 27148446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: similarities of Trimastix species with retortamonad and jakobid flagellates.
    O'Kelly CJ; Farmer MA; Nerad TA
    Protist; 1999 Aug; 150(2):149-62. PubMed ID: 10505415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular phylogeny of choanoflagellates, the sister group to Metazoa.
    Carr M; Leadbeater BS; Hassan R; Nelson M; Baldauf SL
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16641-6. PubMed ID: 18922774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The predicted secretomes of Monosiga brevicollis and Capsaspora owczarzaki, close unicellular relatives of metazoans, reveal new insights into the evolution of the metazoan extracellular matrix.
    Williams F; Tew HA; Paul CE; Adams JC
    Matrix Biol; 2014 Jul; 37():60-8. PubMed ID: 24561726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Choanocyte ultrastructure in Halisarca dujardini (Demospongiae, Halisarcida).
    Gonobobleva E; Maldonado M
    J Morphol; 2009 May; 270(5):615-27. PubMed ID: 19107941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observations on the ultrastructure of the choanoflagellate Codosiga botrytis (Ehr.) Saville-Kent with special reference to the flagellar apparatus.
    Hibberd DJ
    J Cell Sci; 1975 Jan; 17(1):191-219. PubMed ID: 1089676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular phylogeny of Cercomonadidae and kinetid patterns of Cercomonas and Eocercomonas gen. nov. (Cercomonadida, Cercozoa).
    Karpov SA; Bass D; Mylnikov AP; Cavalier-Smith T
    Protist; 2006 Jun; 157(2):125-58. PubMed ID: 16647880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetid Structure of Aphelidium and Paraphelidium (Aphelida) Suggests the Features of the Common Ancestor of Fungi and Opisthosporidia.
    Karpov SA; Cvetkova VS; Annenkova NV; Vishnyakov AE
    J Eukaryot Microbiol; 2019 Nov; 66(6):911-924. PubMed ID: 31077482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Earliest Holozoan expansion of phosphotyrosine signaling.
    Suga H; Torruella G; Burger G; Brown MW; Ruiz-Trillo I
    Mol Biol Evol; 2014 Mar; 31(3):517-28. PubMed ID: 24307687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Phylogeny and Ultrastructure of Aphelidium desmodesmi, a New Species in Aphelida (Opisthosporidia).
    Letcher PM; Powell MJ; Lee PA; Lopez S; Burnett M
    J Eukaryot Microbiol; 2017 Sep; 64(5):655-667. PubMed ID: 28187245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The architecture of cell differentiation in choanoflagellates and sponge choanocytes.
    Laundon D; Larson BT; McDonald K; King N; Burkhardt P
    PLoS Biol; 2019 Apr; 17(4):e3000226. PubMed ID: 30978201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light- and Electron-microscopical Study of Belonocystis marina sp. nov. (Eukaryota: incertae sedis).
    Klimov VI; Zlatogursky VV
    Protist; 2016 Nov; 167(5):479-489. PubMed ID: 27631278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The microtubular cytoskeleton of the apusomonad Thecamonas, a sister lineage to the opisthokonts.
    Heiss AA; Walker G; Simpson AG
    Protist; 2013 Sep; 164(5):598-621. PubMed ID: 23872341
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Seto K; Nakada T; Tanabe Y; Yoshida M; Kagami M
    Mycologia; 2022; 114(3):544-555. PubMed ID: 35605094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.