These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 31493742)
1. Sludge reduction and cost saving in removal of Cu(II)-EDTA from electroplating wastewater by introducing a low dose of acetylacetone into the Fe(III)/UV/NaOH process. Zhang L; Wu B; Gan Y; Chen Z; Zhang S J Hazard Mater; 2020 Jan; 382():121107. PubMed ID: 31493742 [TBL] [Abstract][Full Text] [Related]
2. A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation. Xu Z; Gao G; Pan B; Zhang W; Lv L Water Res; 2015 Dec; 87():378-84. PubMed ID: 26454633 [TBL] [Abstract][Full Text] [Related]
3. Efficient removal of EDTA-complexed Cu(II) by a combined Fe(III)/UV/alkaline precipitation process: Performance and role of Fe(II). Shan C; Xu Z; Zhang X; Xu Y; Gao G; Pan B Chemosphere; 2018 Feb; 193():1235-1242. PubMed ID: 29153329 [TBL] [Abstract][Full Text] [Related]
4. Deep purification of copper from Cu(II)-EDTA acidic wastewater by Fe(III) replacement/diethyldithiocarbamate precipitation. Han M; He J; Wei X; Li S; Zhang C; Zhang H; Sun W; Yue T Chemosphere; 2022 Aug; 300():134546. PubMed ID: 35405198 [TBL] [Abstract][Full Text] [Related]
5. Low-Fe(III) driven UV/Air process for enhanced recovery of heavy metals from EDTA complexed system. Yuan Y; Zhao W; Liu Z; Ling C; Zhu C; Liu F; Li A Water Res; 2020 Mar; 171():115375. PubMed ID: 31865128 [TBL] [Abstract][Full Text] [Related]
6. Validation of a combined Fe(III)/UV/NaOH process for efficient removal of carboxyl complexed Ni from synthetic and authentic effluents. Jiang Z; Ye Y; Zhang X; Pan B Chemosphere; 2019 Nov; 234():917-924. PubMed ID: 31519100 [TBL] [Abstract][Full Text] [Related]
7. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism. Ye Y; Jiang Z; Xu Z; Zhang X; Wang D; Lv L; Pan B Water Res; 2017 Dec; 126():172-178. PubMed ID: 28946060 [TBL] [Abstract][Full Text] [Related]
8. Autocatalytic Decomplexation of Cu(II)-EDTA and Simultaneous Removal of Aqueous Cu(II) by UV/Chlorine. Huang X; Wang Y; Li X; Guan D; Li Y; Zheng X; Zhao M; Shan C; Pan B Environ Sci Technol; 2019 Feb; 53(4):2036-2044. PubMed ID: 30653306 [TBL] [Abstract][Full Text] [Related]
9. Highly efficient removal of phosphonates from water by a combined Fe(III)/UV/co-precipitation process. Sun S; Wang S; Ye Y; Pan B Water Res; 2019 Apr; 153():21-28. PubMed ID: 30685633 [TBL] [Abstract][Full Text] [Related]
10. UV irradiation induced simultaneous reduction of Cu(II) and degradation of EDTA in Cu(II)-EDTA in wastewater containing Cu(II)-EDTA. Zhao J; Hu X; Kong L; Peng X J Hazard Mater; 2024 Mar; 465():133131. PubMed ID: 38086297 [TBL] [Abstract][Full Text] [Related]
11. Intramolecular generation of endogenous Cu(III) for selectively self-catalytic degradation of Cu(II)-EDTA from wastewater by UV/peroxymonosulfate. Yu J; Deng W; Huang X; Zhao M; Li X; Zhang T; Pan B J Hazard Mater; 2024 Mar; 465():133521. PubMed ID: 38232554 [TBL] [Abstract][Full Text] [Related]
12. Decomplexation and subsequent reductive removal of EDTA-chelated Cu II by zero-valent iron coupled with a weak magnetic field: Performances and mechanisms. Guan X; Jiang X; Qiao J; Zhou G J Hazard Mater; 2015 Dec; 300():688-694. PubMed ID: 26296073 [TBL] [Abstract][Full Text] [Related]
13. Novel Cu(II)-EDTA Decomplexation by Discharge Plasma Oxidation and Coupled Cu Removal by Alkaline Precipitation: Underneath Mechanisms. Wang T; Cao Y; Qu G; Sun Q; Xia T; Guo X; Jia H; Zhu L Environ Sci Technol; 2018 Jul; 52(14):7884-7891. PubMed ID: 29928796 [TBL] [Abstract][Full Text] [Related]
14. Non-thermal plasma oxidation of Cu(II)-EDTA and simultaneous Cu(II) elimination by chemical precipitation. Wang Q; Yu J; Chen X; Du D; Wu R; Qu G; Guo X; Jia H; Wang T J Environ Manage; 2019 Oct; 248():109237. PubMed ID: 31310932 [TBL] [Abstract][Full Text] [Related]
15. Anoxic iron electrocoagulation automatically modulates dissolved oxygen and pH for fast reductive decomplexation and precipitation of Cu(II)-EDTA: The critical role of dissolved Fe(II). Xie S; Li C; Zhan H; Shao W; Zhao Y; Liu P; Liao P J Hazard Mater; 2023 Jan; 442():130069. PubMed ID: 36182887 [TBL] [Abstract][Full Text] [Related]
16. Decomplexation efficiency and mechanism of Cu(II)-EDTA by H Zhou D; Hu Y; Guo Q; Yuan W; Deng J; Dang Y Environ Sci Pollut Res Int; 2019 Jan; 26(2):1015-1025. PubMed ID: 28035604 [TBL] [Abstract][Full Text] [Related]
17. Decomplexation of Cu(II)-EDTA by synergistic activation of persulfate with alkali and CuO: Kinetics and activation mechanism. Hong Y; Luo Z; Zhang N; Qu L; Zheng M; Suara MA; Chelme-Ayala P; Zhou X; Gamal El-Din M Sci Total Environ; 2022 Apr; 817():152793. PubMed ID: 35007584 [TBL] [Abstract][Full Text] [Related]
18. Reduction of chromate with UV/diacetyl for the final effluent to be below the discharge limit. Wu B; Zhang L; Wei S; Ou'Yang L; Yin R; Zhang S J Hazard Mater; 2020 May; 389():121841. PubMed ID: 31848094 [TBL] [Abstract][Full Text] [Related]
19. Novel strategy for copper precipitation from cupric complexes wastewater: Catalytic oxidation or reduction self-decomplexation? Gu Y; Sun Y; Zheng W J Hazard Mater; 2023 Jun; 452():131183. PubMed ID: 36966623 [TBL] [Abstract][Full Text] [Related]
20. Sequestration of chelated copper by structural Fe(II): Reductive decomplexation and transformation of Cu(II)-EDTA. He H; Wu D; Zhao L; Luo C; Dai C; Zhang Y J Hazard Mater; 2016 May; 309():116-25. PubMed ID: 26878707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]