These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31494089)

  • 1. Microbial Interaction Network Inference in Microfluidic Droplets.
    Hsu RH; Clark RL; Tan JW; Ahn JC; Gupta S; Romero PA; Venturelli OS
    Cell Syst; 2019 Sep; 9(3):229-242.e4. PubMed ID: 31494089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-based metabolic analysis and microbial community modeling.
    Cardona C; Weisenhorn P; Henry C; Gilbert JA
    Curr Opin Microbiol; 2016 Jun; 31():124-131. PubMed ID: 27060776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massively parallel screening of synthetic microbial communities.
    Kehe J; Kulesa A; Ortiz A; Ackerman CM; Thakku SG; Sellers D; Kuehn S; Gore J; Friedman J; Blainey PC
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12804-12809. PubMed ID: 31186361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal Dynamics of Synthetic Microbial Consortia in Microfluidic Devices.
    Alnahhas RN; Winkle JJ; Hirning AJ; Karamched B; Ott W; Josić K; Bennett MR
    ACS Synth Biol; 2019 Sep; 8(9):2051-2058. PubMed ID: 31361464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial interactions and community assembly at microscales.
    Cordero OX; Datta MS
    Curr Opin Microbiol; 2016 Jun; 31():227-234. PubMed ID: 27232202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-order interactions distort the functional landscape of microbial consortia.
    Sanchez-Gorostiaga A; Bajić D; Osborne ML; Poyatos JF; Sanchez A
    PLoS Biol; 2019 Dec; 17(12):e3000550. PubMed ID: 31830028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Contribution of High-Order Metabolic Interactions to the Global Activity of a Four-Species Microbial Community.
    Guo X; Boedicker JQ
    PLoS Comput Biol; 2016 Sep; 12(9):e1005079. PubMed ID: 27623159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking the stochastic growth of bacterial populations in microfluidic droplets.
    Taylor D; Verdon N; Lomax P; Allen RJ; Titmuss S
    Phys Biol; 2022 Feb; 19(2):026003. PubMed ID: 35042205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures.
    Burmeister A; Grünberger A
    Curr Opin Biotechnol; 2020 Apr; 62():106-115. PubMed ID: 31715386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction variability shapes succession of synthetic microbial ecosystems.
    Liu F; Mao J; Kong W; Hua Q; Feng Y; Bashir R; Lu T
    Nat Commun; 2020 Jan; 11(1):309. PubMed ID: 31949154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trophic Interactions and the Drivers of Microbial Community Assembly.
    Gralka M; Szabo R; Stocker R; Cordero OX
    Curr Biol; 2020 Oct; 30(19):R1176-R1188. PubMed ID: 33022263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet microfluidics-based high-throughput bacterial cultivation for validation of taxon pairs in microbial co-occurrence networks.
    Jiang MZ; Zhu HZ; Zhou N; Liu C; Jiang CY; Wang Y; Liu SJ
    Sci Rep; 2022 Oct; 12(1):18145. PubMed ID: 36307549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperation in microbial communities and their biotechnological applications.
    Cavaliere M; Feng S; Soyer OS; Jiménez JI
    Environ Microbiol; 2017 Aug; 19(8):2949-2963. PubMed ID: 28447371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdroplet-enabled highly parallel co-cultivation of microbial communities.
    Park J; Kerner A; Burns MA; Lin XN
    PLoS One; 2011 Feb; 6(2):e17019. PubMed ID: 21364881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic dependencies drive species co-occurrence in diverse microbial communities.
    Zelezniak A; Andrejev S; Ponomarova O; Mende DR; Bork P; Patil KR
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6449-54. PubMed ID: 25941371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single strain control of microbial consortia.
    Fedorec AJH; Karkaria BD; Sulu M; Barnes CP
    Nat Commun; 2021 Mar; 12(1):1977. PubMed ID: 33785746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering microbial interactions in synthetic human gut microbiome communities.
    Venturelli OS; Carr AC; Fisher G; Hsu RH; Lau R; Bowen BP; Hromada S; Northen T; Arkin AP
    Mol Syst Biol; 2018 Jun; 14(6):e8157. PubMed ID: 29930200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated network analysis reveals the importance of microbial interactions for maize growth.
    Tao J; Meng D; Qin C; Liu X; Liang Y; Xiao Y; Liu Z; Gu Y; Li J; Yin H
    Appl Microbiol Biotechnol; 2018 Apr; 102(8):3805-3818. PubMed ID: 29532103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Microbial Community Networks: Methods and Tools for Studying Microbial Interactions.
    Srinivasan S; Jnana A; Murali TS
    Microb Ecol; 2024 Apr; 87(1):56. PubMed ID: 38587642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MPLasso: Inferring microbial association networks using prior microbial knowledge.
    Lo C; Marculescu R
    PLoS Comput Biol; 2017 Dec; 13(12):e1005915. PubMed ID: 29281638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.