BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

746 related articles for article (PubMed ID: 31494246)

  • 1. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome.
    Vemuri S; Srivastava R; Mir Q; Hashemikhabir S; Dong XC; Janga SC
    Methods; 2020 Jun; 178():104-113. PubMed ID: 31494246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GenomeCRISPR - a database for high-throughput CRISPR/Cas9 screens.
    Rauscher B; Heigwer F; Breinig M; Winter J; Boutros M
    Nucleic Acids Res; 2017 Jan; 45(D1):D679-D686. PubMed ID: 27789686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPcut: A novel tool for designing optimal sgRNAs for CRISPR/Cas9 based experiments in human cells.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Genomics; 2019 Jul; 111(4):560-566. PubMed ID: 29605634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.
    Zhou H; Zhou M; Li D; Manthey J; Lioutikova E; Wang H; Zeng X
    BMC Genomics; 2017 Nov; 18(Suppl 9):826. PubMed ID: 29219081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloud-Based Design of Short Guide RNA (sgRNA) Libraries for CRISPR Experiments.
    Heigwer F; Boutros M
    Methods Mol Biol; 2021; 2162():3-22. PubMed ID: 32926374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale CRISPR pooled screens.
    Sanjana NE
    Anal Biochem; 2017 Sep; 532():95-99. PubMed ID: 27261176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-Based Gene Dropout Screens.
    Wu K; Malek SN
    Methods Mol Biol; 2019; 1881():185-200. PubMed ID: 30350207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.
    Liang G; Zhang H; Lou D; Yu D
    Sci Rep; 2016 Feb; 6():21451. PubMed ID: 26891616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.
    Doench JG; Fusi N; Sullender M; Hegde M; Vaimberg EW; Donovan KF; Smith I; Tothova Z; Wilen C; Orchard R; Virgin HW; Listgarten J; Root DE
    Nat Biotechnol; 2016 Feb; 34(2):184-191. PubMed ID: 26780180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mismatch Intolerance of 5'-Truncated sgRNAs in CRISPR/Cas9 Enables Efficient Microbial Single-Base Genome Editing.
    Lee HJ; Kim HJ; Lee SJ
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34208669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. sgRNA Sequence Motifs Blocking Efficient CRISPR/Cas9-Mediated Gene Editing.
    Graf R; Li X; Chu VT; Rajewsky K
    Cell Rep; 2019 Jan; 26(5):1098-1103.e3. PubMed ID: 30699341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
    Kelkar A; Zhu Y; Groth T; Stolfa G; Stablewski AB; Singhi N; Nemeth M; Neelamegham S
    Mol Ther; 2020 Jan; 28(1):29-41. PubMed ID: 31601489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iCSDB: an integrated database of CRISPR screens.
    Choi A; Jang I; Han H; Kim MS; Choi J; Lee J; Cho SY; Jun Y; Lee C; Kim J; Lee B; Lee S
    Nucleic Acids Res; 2021 Jan; 49(D1):D956-D961. PubMed ID: 33137185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements.
    Tycko J; Wainberg M; Marinov GK; Ursu O; Hess GT; Ego BK; Aradhana ; Li A; Truong A; Trevino AE; Spees K; Yao D; Kaplow IM; Greenside PG; Morgens DW; Phanstiel DH; Snyder MP; Bintu L; Greenleaf WJ; Kundaje A; Bassik MC
    Nat Commun; 2019 Sep; 10(1):4063. PubMed ID: 31492858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Noncoding RNA Domains to Genomic Loci with CRISPR-Display: Guidelines for Designing, Building, and Testing sgRNA-ncRNA Expression Constructs.
    Shechner DM
    Methods Mol Biol; 2021; 2162():115-152. PubMed ID: 32926381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Drug Resistance Mechanisms Using Genome-Wide CRISPR-Cas9 Screens.
    MacLeod G; Rajakulendran N; Angers S
    Methods Mol Biol; 2022; 2535():141-156. PubMed ID: 35867229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems.
    Filippova J; Matveeva A; Zhuravlev E; Stepanov G
    Biochimie; 2019 Dec; 167():49-60. PubMed ID: 31493470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guide RNA Design for Genome-Wide CRISPR Screens in Yarrowia lipolytica.
    Ramesh A; Wheeldon I
    Methods Mol Biol; 2021; 2307():123-137. PubMed ID: 33847986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.