These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31494292)

  • 1. DNA aptamer immobilized hydroxyapatite for enhancing angiogenesis and bone regeneration.
    Son J; Kim J; Lee K; Hwang J; Choi Y; Seo Y; Jeon H; Kang HC; Woo HM; Kang BJ; Choi J
    Acta Biomater; 2019 Nov; 99():469-478. PubMed ID: 31494292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair.
    Quinlan E; López-Noriega A; Thompson EM; Hibbitts A; Cryan SA; O'Brien FJ
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1097-1109. PubMed ID: 25783558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salvianolic Acid B-Loaded Chitosan/hydroxyapatite Scaffolds Promotes The Repair Of Segmental Bone Defect By Angiogenesis And Osteogenesis.
    Ji C; Bi L; Li J; Fan J
    Int J Nanomedicine; 2019; 14():8271-8284. PubMed ID: 31686820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair.
    Kim BS; Yang SS; You HK; Shin HI; Lee J
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1311-e1324. PubMed ID: 28714275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Surface with Enhanced Angiogenesis for Improving Long-Term Osteogenic Fixation of Poly(ether ether ketone) Implants.
    Dong T; Duan C; Wang S; Gao X; Yang Q; Yang W; Deng Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14971-14982. PubMed ID: 32159330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained Release of Bone Morphogenetic Protein-2 through Alginate Microbeads Enhances Bone Regeneration in Rabbit Tibial Metaphyseal Defect Model.
    Kim J; Lee S; Choi Y; Choi J; Kang BJ
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asprin-loaded strontium-containing α-calcium sulphate hemihydrate/nano-hydroxyapatite composite promotes regeneration of critical bone defects.
    Jiang Y; Qin H; Wan H; Yang J; Yu Q; Jiang M; Yu B
    J Cell Mol Med; 2020 Dec; 24(23):13690-13702. PubMed ID: 33159499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration.
    Zheng Y; Yang Y; Deng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():770-782. PubMed ID: 30889752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes.
    Song Y; Wu H; Gao Y; Li J; Lin K; Liu B; Lei X; Cheng P; Zhang S; Wang Y; Sun J; Bi L; Pei G
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16058-16075. PubMed ID: 32182418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New blood vessel formation and expression of VEGF receptors after implantation of platelet growth factor-enriched biodegradable nanocrystalline hydroxyapatite.
    Kilian O; Alt V; Heiss C; Jonuleit T; Dingeldein E; Flesch I; Fidorra U; Wenisch S; Schnettler R
    Growth Factors; 2005 Jun; 23(2):125-33. PubMed ID: 16019434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deferoxamine released from poly(lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis.
    Jia P; Chen H; Kang H; Qi J; Zhao P; Jiang M; Guo L; Zhou Q; Qian ND; Zhou HB; Xu YJ; Fan Y; Deng LF
    J Biomed Mater Res A; 2016 Oct; 104(10):2515-27. PubMed ID: 27227768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous lithium-doped hydroxyapatite scaffold seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells for bone-tissue regeneration.
    Li D; Huifang L; Zhao J; Yang Z; Xie X; Wei Z; Li D; Kang P
    Biomed Mater; 2018 Jun; 13(5):055002. PubMed ID: 29775181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: In vitro and in vivo study.
    Daugela P; Pranskunas M; Juodzbalys G; Liesiene J; Baniukaitiene O; Afonso A; Sousa Gomes P
    J Tissue Eng Regen Med; 2018 May; 12(5):1195-1208. PubMed ID: 29498222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect.
    Kuttappan S; Mathew D; Jo JI; Tanaka R; Menon D; Ishimoto T; Nakano T; Nair SV; Nair MB; Tabata Y
    Acta Biomater; 2018 Sep; 78():36-47. PubMed ID: 30067947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.
    Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z
    Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of bone morphogenetic protein-2 to gelatin/avidin-modified hydroxyapatite composite scaffolds for bone regeneration.
    Cheng CH; Lai YH; Chen YW; Yao CH; Chen KY
    J Biomater Appl; 2019 Apr; 33(9):1147-1156. PubMed ID: 30739563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone union formation in the rat mandibular symphysis using hydroxyapatite with or without simvastatin: effects on healthy, diabetic, and osteoporotic rats.
    Camacho-Alonso F; Martínez-Ortiz C; Plazas-Buendía L; Mercado-Díaz AM; Vilaplana-Vivo C; Navarro JA; Buendía AJ; Merino JJ; Martínez-Beneyto Y
    Clin Oral Investig; 2020 Apr; 24(4):1479-1491. PubMed ID: 31925587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteostatin improves the osteogenic activity of fibroblast growth factor-2 immobilized in Si-doped hydroxyapatite in osteoblastic cells.
    Lozano D; Feito MJ; Portal-Núñez S; Lozano RM; Matesanz MC; Serrano MC; Vallet-Regí M; Portolés MT; Esbrit P
    Acta Biomater; 2012 Jul; 8(7):2770-7. PubMed ID: 22487933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.